Browsing by Author "Flores, Erick I. Saavedra"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemExperimental Study on the Mechanical Properties and Microstructures of Cenosphere Concrete(2023) Arunachalam, Krishna Prakash; Avudaiappan, Siva; Flores, Erick I. Saavedra; Parra, Pablo FernandoThe most valuable components of coal fly ash are cenospheres. Cenospheres are hollow spherical particles produced during the coal-burning processes. As a result of their excellent characteristics, such as high workability, high heat resistance, low bulk density, and high strength, cenospheres can be used in the manufacturing of lightweight cement concrete. The research efforts and outcomes are to produce long-lasting cement-based lightweight concrete (LWC) composites with good mechanical properties. The novelty of this investigation is to determine the cement concrete strength when silica fume (SF) and cenospheres (CS) were used as a replacement for cement. Throughout the experiments, a consistent substitution of 12% silica fume was incorporated into cement mass. Silica is used as a micro filler and pozzolanic reactant to strengthen concrete. The concrete mixtures were tested to ensure they met the requirements of the lightweight concrete in terms of their mechanical, physical, and durability qualities. According to the findings, lightweight concrete standards were met, and environmental sustainability was improved with the use of these mix proportions. Concrete specimen's self-weight decreases by 35% with 30% cenosphere as a replacement. The micrograph shows the lack of portlandite is filled by mullite and other alumino silicates from the cenosphere. In order to achieve sustainability in concrete manufacturing, these mixtures can be suggested for the making of structural LWC that makes use of a large volume of industrial waste while conserving cement and natural resources.
- ItemInnovative use of micronized biomass silica-GGBS as agro-industrial by-products for the production of a sustainable high-strength geopolymer concrete(2023) Jayanthi, V.; Avudaiappan, Siva; Amran, Mugahed; Arunachalam, Krishna Prakash; Qader, Diyar N.; Delgado, Manuel Chavez; Flores, Erick I. Saavedra; Rashid, Raizal S. M.Micronized biomass silica (MBS) and ground granulated blast furnace slag (GGBS) are agro-industrial byproducts generated by incinerating of rice husk (grinding in jar mill) and blast fur-naces that used produce iron, respectively. MBS accounts for 20% of the world's total paddy output of 590 million tons. These by-products (MBS and GGBS) have a high concentration of amorphous silica, which is utilized as a mineral additive in concrete. This amorphous silica in-teracts with hydration products, resulting in the formation of additional CSH gel. This improves concrete's strength and durability properties. Therefore, it is proven that inclusion of agro-industrial by-products in concrete helps to promote sustainable and greener development, which in turn reduces carbon footprints and waste that must be disposed of in landfills. There have been few investigations on concrete using MBS and demonstrated the great potential of employing MBS as a cement substitute or additive in normal concrete. Also, the utilization of MBS as partial replace to GGBS in geopolymer concrete (GPC) with different molarity is a novel aspect of this study. However, this study has the aim and limit to develop a high-strength eco-friendly GPC with agro-industrial byproducts (MBS and GGBS) for use in sustainable construction. The impact of incorporating MBS as a partial replacement of GGBS on compressive and split tensile strengths, sorptivity, and chloride permeability was tested up to the age of 28 days. MBS was used to replace GGBS in varying percentages in the preparation of concretes. MBS were used in con-crete at 0%, 10%, 20%, and 30% replacement by weight. It was discovered that a GPC combination containing MBS 20% and the balance GGBS as the binder had the best performance in terms of its strength and durability. The compressive strengths of all GPC mixtures exceeded the intended design strength. The main findings of this study demonstrated clearly that MBS may be employed as a binder in the production of GPC.
- ItemMechanical Behaviour and Impact of Various Fibres Embedded with Eggshell Powder Epoxy Resin Biocomposite(2022) Sivakumar, Aburpa Avanachari; Sankarapandian, Sankarasabapathi; Avudaiappan, Siva; Flores, Erick I. SaavedraNatural fiber composites are becoming an alternate material to synthetic fiber composites, and the use of eggshell bio-filler has been explored in polymer composites as environmental protection. Jute, coir, and sisal fibers were utilized in this research to make composites out of natural fibers. Polymer composites were made using epoxy resin with different amounts of eggshell powder (ESP) as fillers (2%, 4%, 6%, 8%, and 10% of weight). The mechanical and biodegradability properties of the synthesized composites were investigated. The testing results showed that composites with an optimum percentage of 6% ESP as filler improved mechanical characteristics significantly in all three fiber composites. Among the three fibers, coir fiber with 6% ESP added showed a substantial increase in tensile, flexural, impact, and hardness strength properties by 34.64%, 48.50%, 33.33%, and 35.03%, respectively. In addition, the percentage weight loss of coir fiber composites at 9 weeks is noteworthy in terms of biodegradability testing. As a result, epoxy composites containing eggshell fillers could be employed in applications requiring better tensile, flexural, impact, and hardness strength.
- ItemMicrostructure and Water Retention Kinetics in Autogenous Cured Self-Compacting Concrete Blends Using Super Absorbent Polymer(2023) Laila, Lija Rajamony; Karmegam, Aarthi; Avudaiappan, Siva; Flores, Erick I. SaavedraThis research aimed to determine how a super absorbent polymer affects the microstructural characteristics and water retention kinetics of a new composite made by substituting granite pulver (GP) and fly ash (FA) for cement. Understanding the mechanics of water movement is crucial for comprehending the effectiveness of autogenous curing. Several experiments were conducted to analyze the water mitigation kinetics of super absorbent polymer (SAP) in the hydrating cement paste of autogenous cured self-compacting concrete (GP-ACSSC) mixtures. In the first hours following casting, water sorptivity, water retention, and hydration tests were carried out. The effects of various concentrations of SAP and GP, which was utilized as an alternative cement for the production of sustainable concrete that leads to reduction in carbon footprint, on the autogenous cured self-compacting concrete with reference to the abovementioned properties were explored. The investigation showed that releasing the curing water at a young age, even around the beginning of hydration, allowed homogenous and almost immediate distribution of water across the full cured paste volume, which improved the water retention kinetics. Compared to the control mixtures, the addition of SAP up to 0.6% and the substitution of cement with GP up to 15% had favorable impacts on all water kinetics parameters.
