• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Fletcher, Thomas J."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A motion-corrected deep-learning reconstruction framework for accelerating whole-heart magnetic resonance imaging in patients with congenital heart disease
    (Elsevier B.V., 2024) Phair, Andrew; Fotaki, Anastasia; Felsner, Lina; Fletcher, Thomas J.; Qi, Haikun; Botnar, Rene Michael; Prieto Vásquez, Claudia del Carmen
    Background: Cardiovascular magnetic resonance (CMR) is an important imaging modality for the assessment and management of adult patients with congenital heart disease (CHD). However, conventional techniques for three-dimensional (3D) whole-heart acquisition involve long and unpredictable scan times and methods that accelerate scans via k-space undersampling often rely on long iterative reconstructions. Deep-learning-based reconstruction methods have recently attracted much interest due to their capacity to provide fast reconstructions while often outperforming existing state-of-the-art methods. In this study, we sought to adapt and validate a non-rigid motion-corrected model-based deep learning (MoCo-MoDL) reconstruction framework for 3D whole-heart MRI in a CHD patient cohort. Methods: The previously proposed deep-learning reconstruction framework MoCo-MoDL, which incorporates a non-rigid motion-estimation network and a denoising regularization network within an unrolled iterative reconstruction, was trained in an end-to-end manner using 39 CHD patient datasets. Once trained, the framework was evaluated in eight CHD patient datasets acquired with seven-fold prospective undersampling. Reconstruction quality was compared with the state-of-the-art non-rigid motion-corrected patch-based low-rank reconstruction method (NR-PROST) and against reference images (acquired with three-or-four-fold undersampling and reconstructed with NR-PROST). Results: Seven-fold undersampled scan times were 2.1 ± 0.3 minutes and reconstruction times were ∼30 seconds, approximately 240 times faster than an NR-PROST reconstruction. Image quality comparable to the reference images was achieved using the proposed MoCo-MoDL framework, with no statistically significant differences found in any of the assessed quantitative or qualitative image quality measures. Additionally, expert image quality scores indicated the MoCo-MoDL reconstructions were consistently of a higher quality than the NR-PROST reconstructions of the same data, with the differences in 12 of the 22 scores measured for individual vascular structures found to be statistically significant. Conclusion: The MoCo-MoDL framework was applied to an adult CHD patient cohort, achieving good quality 3D whole-heart images from ∼2-minute scans with reconstruction times of ∼30 seconds.
  • No Thumbnail Available
    Item
    End-to-end deep learning-based motion correction and reconstruction for accelerated whole-heart joint T 1/T 2 mapping.
    (2025) Felsner, Lina; Velasco, Carlos; Phair, Andrew; Fletcher, Thomas J.; Qi, Haikun; Botnar, René Michael; Prieto Vásquez, Claudia
    PURPOSE: To accelerate 3D whole-heart joint T 1/T 2 mapping for myocardial tissue characterization using an end-to-end deep learning algorithm for joint motion estimation and model-based motion-corrected reconstruction of multi-contrast undersampled data.METHODS: A free-breathing high-resolution motion-compensated 3D joint T 1/T 2 water/fat sequence is employed. The sequence consists of the acquisition of four interleaved volumes with 2-echo encoding, resulting in eight volumes with different contrasts. An end-to-end non-rigid motion-corrected reconstruction network is used to estimate high quality motion-corrected reconstructions from the eight multi-contrast undersampled data for subsequent joint T 1/T 2 mapping. Reconstruction with the proposed approach was compared against state-of-the-art motion-corrected HD-PROST reconstruction.RESULTS: The proposed approach yields images with good visual agreement compared to the reference reconstructions. The comparison of the quantitative values in the T 1 and T 2 maps showed the absence of systematic errors, and a small bias of -6.35 ms and -1.8 ms, respectively. The proposed reconstruction time was 24 seconds in comparison to 2.5 hours with motion-corrected HD-PROST, resulting in a reconstruction speed-up of over 370 times.CONCLUSION: In conclusion, this study presents a promising method for efficient whole-heart myocardial tissue characterization. Specifically, the research highlights the potential of the multi-contrast end-to-end deep learning algorithm for joint motion estimation and model-based motion-corrected reconstruction of multi-contrast undersampled data. The findings underscore its ability to compute T 1 and T 2 values with good agreement when compared to the reference motion-corrected HD-PROST method, while substantially reducing reconstruction time.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback