Browsing by Author "Fletcher, Thomas J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA motion-corrected deep-learning reconstruction framework for accelerating whole-heart magnetic resonance imaging in patients with congenital heart disease(Elsevier B.V., 2024) Phair, Andrew; Fotaki, Anastasia; Felsner, Lina; Fletcher, Thomas J.; Qi, Haikun; Botnar, Rene Michael; Prieto Vásquez, Claudia del CarmenBackground: Cardiovascular magnetic resonance (CMR) is an important imaging modality for the assessment and management of adult patients with congenital heart disease (CHD). However, conventional techniques for three-dimensional (3D) whole-heart acquisition involve long and unpredictable scan times and methods that accelerate scans via k-space undersampling often rely on long iterative reconstructions. Deep-learning-based reconstruction methods have recently attracted much interest due to their capacity to provide fast reconstructions while often outperforming existing state-of-the-art methods. In this study, we sought to adapt and validate a non-rigid motion-corrected model-based deep learning (MoCo-MoDL) reconstruction framework for 3D whole-heart MRI in a CHD patient cohort. Methods: The previously proposed deep-learning reconstruction framework MoCo-MoDL, which incorporates a non-rigid motion-estimation network and a denoising regularization network within an unrolled iterative reconstruction, was trained in an end-to-end manner using 39 CHD patient datasets. Once trained, the framework was evaluated in eight CHD patient datasets acquired with seven-fold prospective undersampling. Reconstruction quality was compared with the state-of-the-art non-rigid motion-corrected patch-based low-rank reconstruction method (NR-PROST) and against reference images (acquired with three-or-four-fold undersampling and reconstructed with NR-PROST). Results: Seven-fold undersampled scan times were 2.1 ± 0.3 minutes and reconstruction times were ∼30 seconds, approximately 240 times faster than an NR-PROST reconstruction. Image quality comparable to the reference images was achieved using the proposed MoCo-MoDL framework, with no statistically significant differences found in any of the assessed quantitative or qualitative image quality measures. Additionally, expert image quality scores indicated the MoCo-MoDL reconstructions were consistently of a higher quality than the NR-PROST reconstructions of the same data, with the differences in 12 of the 22 scores measured for individual vascular structures found to be statistically significant. Conclusion: The MoCo-MoDL framework was applied to an adult CHD patient cohort, achieving good quality 3D whole-heart images from ∼2-minute scans with reconstruction times of ∼30 seconds.
- ItemEnd-to-end deep learning-based motion correction and reconstruction for accelerated whole-heart joint T 1/T 2 mapping.(2025) Felsner, Lina; Velasco, Carlos; Phair, Andrew; Fletcher, Thomas J.; Qi, Haikun; Botnar, René Michael; Prieto Vásquez, ClaudiaPURPOSE: To accelerate 3D whole-heart joint T 1/T 2 mapping for myocardial tissue characterization using an end-to-end deep learning algorithm for joint motion estimation and model-based motion-corrected reconstruction of multi-contrast undersampled data.METHODS: A free-breathing high-resolution motion-compensated 3D joint T 1/T 2 water/fat sequence is employed. The sequence consists of the acquisition of four interleaved volumes with 2-echo encoding, resulting in eight volumes with different contrasts. An end-to-end non-rigid motion-corrected reconstruction network is used to estimate high quality motion-corrected reconstructions from the eight multi-contrast undersampled data for subsequent joint T 1/T 2 mapping. Reconstruction with the proposed approach was compared against state-of-the-art motion-corrected HD-PROST reconstruction.RESULTS: The proposed approach yields images with good visual agreement compared to the reference reconstructions. The comparison of the quantitative values in the T 1 and T 2 maps showed the absence of systematic errors, and a small bias of -6.35 ms and -1.8 ms, respectively. The proposed reconstruction time was 24 seconds in comparison to 2.5 hours with motion-corrected HD-PROST, resulting in a reconstruction speed-up of over 370 times.CONCLUSION: In conclusion, this study presents a promising method for efficient whole-heart myocardial tissue characterization. Specifically, the research highlights the potential of the multi-contrast end-to-end deep learning algorithm for joint motion estimation and model-based motion-corrected reconstruction of multi-contrast undersampled data. The findings underscore its ability to compute T 1 and T 2 values with good agreement when compared to the reference motion-corrected HD-PROST method, while substantially reducing reconstruction time.