• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Figueroa, Ronny"

Now showing 1 - 7 of 7
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Characterizing the Water Storage Capacity and Hydrological Role of Mountain Peatlands in the Arid Andes of North-Central Chile
    (2020) Valois, Remi; Schaffer, Nicole; Figueroa, Ronny; Maldonado, Antonio; Yanez, Eduardo; Hevia, Andres; Yanez Carrizo, Gonzalo; MacDonell, Shelley
    High-altitude peatlands in the Andes, i.e., bofedales, play an essential role in alpine ecosystems, regulating the local water balance and supporting biodiversity. This is particularly true in semiarid Chile, where bofedales develop near the altitudinal and hydrological limits of plant life. The subterranean geometry and stratigraphy of one peatland was characterized in north-central Chile using Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR) and core extraction. Two sounding locations, two transversal and one longitudinal profile allowed a 3D interpretation of the bofedal's internal structure. A conceptual model of the current bofedal system is proposed. Geophysical results combined with porosity measurements were used to estimate the bofedal water storage capacity. Using hydrological data at the watershed scale, implications regarding the hydrological role of bofedales in the semiarid Andes were then briefly assessed. At the catchment scale, bofedal water storage capacity, evapotranspiration losses and annual streamflow are on the same order of magnitude. High-altitude peatlands are therefore storing a significant amount of water and their impact on basin hydrology should be investigated further.
  • Loading...
    Thumbnail Image
    Item
    Dynamic characterization of the Mejillones Basin in northern Chile, using combined geophysical field measurements
    (2018) Maringue, José; Yáñez Carrizo, Gonzalo Alejandro; Sáez Robert, Esteban; Podestá, Luis; Figueroa, Ronny; Estay, Nicolás P.; Lira, Elías
  • No Thumbnail Available
    Item
    Geological and geotechnical investigation of the seismic ground response characteristics in some urban and suburban sites in Chile exposed to large seismic threats
    (2022) Maringue, Jose; Mendoza, Laura; Saez, Esteban; Yanez, Gonzalo; Montalva, Gonzalo; Soto, Valeria; Ayala, Felipe; Perez-Estay, Nicolas; Figueroa, Ronny; Sepulveda, Natalia; Galvez, Carlos; Ramirez, Paola; Ovalle, Carlos
    The central area of Chile's Valparaiso Region has been classified as a seismic gap for a major earthquake, which makes it very important to understand the seismic hazard of the zone. Generally, seismic codes consider a qualitative classification of sites to estimate the possible damage in the case of an earthquake scenario. Estimating the values of acceleration could be very important to prevent damages and increase preparedness for these rare events. In this research, a qualitative and quantitative estimation of seismic hazard is performed in the study area (Valparaiso region between Papudo and San Antonio 32 degrees-34 degrees S). This is achieved through an integrated and relatively economical approach which considers the information from Geology, Geophysical experiments (Gravity and seismic methods), and Geotechnical analyses. The results of the geophysical survey and geology information allow dividing the zone into five site types through a new proposal of site classification that depends not only on the V-s30,V- but also on the sites predominant period (T-0), which is an innovation of this work for the Chilean code. The Peak Ground Acceleration (PGA) values in the study zone were estimated using a Ground Motion Predictive Equation developed for the Chilean subduction zone. Additionally, we consider three different seismic scenarios according to the history of events in Central Chile. The results of this quantitative analysis show PGA values up to 0.52 g for the median and 1.2 g for the 84th percentile of the scenarios. Overall, the highest accelerations (PGA) are in zones with low shear wave velocities (< 500 m/s), a long predominant period (> 0.4 s) and where geology establishes the presence of low stiffness soils. The comparison of response spectra from the model against records from 2010 Maule and 1985 Valparaiso earthquakes shows available models tend to overpredict the intensities.
  • No Thumbnail Available
    Item
    Groundwater controls on headwater stream dynamics
    (2025) Roques, Clément; Abhervé, Ronan; Etienne, Bernard Christian; Figueroa, Ronny; Cornette, Nicolas; Gauvain, Alexandre; Dreuzy, Jean-Raynald de; Leray, Sarah Tiphaine Lucile; Bouchez, Camille; Boisson, Alexandre; Aquilina Luc; Brunner, Philip
  • Loading...
    Thumbnail Image
    Item
    HydroModPy: A Python toolbox for deploying catchment-scale shallow groundwater models 
    (2025) Gauvain, Alexandre; Abhervé, Ronan; Coche, Alexandre; Mesnil, Martin Le; Roques, Clément; Bouchez, Camille; Marçais, Jean; Leray Sarah,Tiphaine Lucile; Marti Etienne, Bernard Christian; Figueroa, Ronny; Bresciani, Etienne; Vautier, Camille; Boivin, Bastien; Sallou, June; Bourcier, Johan; Combemale, Benoit; Brunner, Philip; Longuevergne, Laurent; Aquilina, Luc; Dreuzy, Jean-Raynald de
    In response to the growing demand for groundwater flow models, we present HydroModPy, an open-source toolboxdesigned to automate their deployment at the catchment scale. Built on top of the MODFLOW-enabling FloPy library,HydroModPy combines the robust WhiteboxTools toolbox for geospatial analysis and the well-validated MODFLOW codefor groundwater modeling. This Python-based toolbox streamlines the construction, calibration, and analysis of unconfined aquifer models while adhering to FAIR (Findable, Accessible, Interoperable, and Reusable) principles. It enhances model reproducibility through editable Python code, supports multi-site deployment, and provides compatibility with alternative groundwater flow solvers. Furthermore, it integrates pre- and post-processing functionalities to simplify workflows. The toolbox enables catchment delineation and hydrological feature extraction from DEMs, followed by semi-automatic model construction and advanced visualization of hydraulic head and flow results. Users can choose from predefined aquifer structures and hydraulic properties such as exponential decay of hydraulic conductivity and porosity with depth or import complex 3Dgeological models. HydroModPy outputs can be exported in standard formats (e.g., raster, shapefile, netCDF), including water table elevation, water table depth, groundwater storage, groundwater-dependent hydrographic network and streamflow rates, and subsurface residence times. HydroModPy is tailored for the deployment in diverse geomorphological and hydrological settings, enabling the testing and exploration of aquifer models under varying recharge conditions. Its deployment capabilities are demonstrated in complex shallow basement and crystalline aquifers, where topography and geology primarily govern groundwater flow dynamics from hillslope to catchment scales. As an open-source toolbox, HydroModPy is designed for the community and actively encourages contributions from its users. It supports research in hydro(geo)logy and land and water management, while also providing valuable opportunities for teaching and education
  • No Thumbnail Available
    Item
    Rheological, petrophysical and geometrical constraints of a subduction channel from a numerical model perspective: Insights from La Cabana Paleozoic peridotites, Coastal Cordillera of south-central Chile
    (2022) Sanhueza, Jorge; Yanez, Gonzalo; Barra, Fernando; Maringue, Jose; Figueroa, Ronny; Saez, Esteban
    The emplacement of ultramafic blocks in accretionary complexes poses a geodynamic problem due to their negative buoyancy. In this study, we explore plausible emplacement scenarios for peridotite bodies in the Coastal Cordillera of south-central Chile by combining geophysical observations, numerical modeling and available petrological data for ultramafic blocks exhumed along the subduction channel. The La Cabana massif is the largest serpentinized peridotite complex yet recognized in the Coastal Cordillera, however, its size and petrophysical characteristics remain unknown. The geophysical measurements were performed to determine the size of this body, involving magnetic airborne surveys and electrical resistivity tomography. Inversion data show that the largest ultramafic block in La Cabana is 3 km long, 1.5 km wide and at least 1.2 km deep. This result constrains the characteristics of the block transported by the subduction channel. In the second step, we developed a numerical model for the subduction channel assuming a viscous rheology. In this modeling effort we search for tectonic scenarios that provide adequate conditions for the exhumation of the ultramafic body in La Cabana. These scenarios included a combination of key parameters, subduction angle dip and velocity, subduction channel geometry, rheology and density contrast. Scenarios compatible with the exhumation of La Cabana body type includes channel viscosity range of 10(19-20) Pa s, fast exhumation rates at mantle depths (10-20 mm/yr; >30-40 km), steep subduction angles (30 degrees-60 degrees), subduction channel widths of 3-5 km, density contrast between -200 and -400 kg/m(3) and a body diameter of 1.5 km which is consistent with our geophysical inversions. On the contrary, slow exhumation rates (similar to 1 mm/yr), low subduction angles (15 degrees), high-density contrasts (-400 to -600 kg/m(3)) and bodies larger than 1.5 km wide, are not viable exhumation scenarios. The methodology developed provided insights to infer ancient subduction channel geometries and rheologies that include peridotite.
  • Loading...
    Thumbnail Image
    Item
    Selective reactivation of inherited fault zones driven by stress field changes: Insights from structural and paleostress analysis of the Pocuro Fault Zone, Southern Central Andes (32.8 degrees S)
    (PERGAMON-ELSEVIER SCIENCE LTD, 2022) Taucare, Matias; Roquer, Tomas; Heuser, Gert; Perez-Estay, Nicolas; Arancibia, Gloria; Yanez, Gonzalo; Viguier, Benoit; Figueroa, Ronny; Morataa, Diego; Daniele, Linda
    This study aims to explain the selective reactivation of normal faults during the Andean orogeny at the Southern Central Andes western flank. We conducted a structural mapping and paleostress field reconstruction in the regional-scale Pocuro Fault Zone (PFZ) at 32.8 degrees S. Results reveal that the architecture of the PFZ results from at least two deformation phases, each revealing an individual progressive and gradual evolution. The earliest deformation phase is recorded by two similar to NS-striking normal faults involving a 5 km wide damage zone characterized by quartz-laumontite and calcite veins that were developed under an extensional regime with a WNW-ESE-trending sigma 3-axis. The latest deformation phase is recorded by one NS-striking reverse-dextral fault with goethite-hematite syn-tectonic precipitation and two NW-striking reverse-sinistral faults. Reverse faults were developed under a compressional/transpressional regime characterised by an ENE-WSW-trending sigma 1-axis with a sigma 2-/sigma 3-axis permutation. From a geophysical data reassessment, we inferred that observed faults in the surface within the PFZ are regional-scale deep-seated structures. Considering previous geochronological data, we correlated the earliest and latest phases with the Abanico Basin extension (middle Eocene-early Miocene) and its subsequent inversion (Miocene). Given the neotectonic evidence (geomorphic markers and deformation of unconsolidated deposits), the latter phase likely remains active. Quartz-laumontite cementation of the fault core's cataclastic material promotes mechanical strengthening leading to negative feedback for the reactivation of inherited normal faults as reverse ones. Conversely, the concentration of fractures in the damage zone between the normal faults promotes mechanical weakening resulting in a preferential area for the propagation of reverse fault during the compressive/transpressional phase.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback