Browsing by Author "Figueroa, Ana Maria"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA single bout of resistance exercise triggers mitophagy, potentially involving the ejection of mitochondria in human skeletal muscle(2024) Diaz-Castro, Francisco; Tunon-Suarez, Mauro; Rivera, Patricia; Botella, Javier; Cancino, Jorge; Figueroa, Ana Maria; Gutierrez, Juan; Cantin, Claudette; Deldicque, Louise; Zbinden-Foncea, Hermann; Nielsen, Joachim; Henriquez-Olguin, Carlos; Morselli, Eugenia; Castro-Sepulveda, MauricioAimThe present study aimed to investigate the effects of a single bout of resistance exercise on mitophagy in human skeletal muscle (SkM).MethodsEight healthy men were recruited to complete an acute bout of one-leg resistance exercise. SkM biopsies were obtained one hour after exercise in the resting leg (Rest-leg) and the contracting leg (Ex-leg). Mitophagy was assessed using protein-related abundance, transmission electron microscopy (TEM), and fluorescence microscopy.ResultsOur results show that acute resistance exercise increased pro-fission protein phosphorylation (DRP1Ser616) and decreased mitophagy markers such as PARKIN and BNIP3L/NIX protein abundance in the Ex-leg. Additionally, mitochondrial complex IV decreased in the Ex-leg when compared to the Rest-leg. In the Ex-leg, TEM and immunofluorescence images showed mitochondrial cristae abnormalities, a mitochondrial fission phenotype, and increased mitophagosome-like structures in both subsarcolemmal and intermyofibrillar mitochondria. We also observed increased mitophagosome-like structures on the subsarcolemmal cleft and mitochondria in the extracellular space of SkM in the Ex-leg. We stimulated human primary myotubes with CCCP, which mimics mitophagy induction in the Ex-leg, and found that BNIP3L/NIX protein abundance decreased independently of lysosomal degradation. Finally, in another human cohort, we found a negative association between BNIP3L/NIX protein abundance with both mitophagosome-like structures and mitochondrial cristae density in the SkM.ConclusionThe findings suggest that a single bout of resistance exercise can initiate mitophagy, potentially involving mitochondrial ejection, in human skeletal muscle. BNIP3L/NIX is proposed as a sensitive marker for assessing mitophagy flux in SkM.
- ItemMitofusin-2 induced by exercise modifies lipid droplet-mitochondria communication, promoting fatty acid oxidation in male mice with NAFLD(2024) Borquez, Juan Carlos; Diaz-Castro, Francisco; Pino-de La Fuente, Francisco; Espinoza, Karla; Figueroa, Ana Maria; Martinez-Ruiz, Inma; Hernandez, Vanessa; Lopez-Soldado, Iliana; Ventura, Raill; Domingo, Joan Carles; Bosch, Marta; Fajardo, Alba; Sebastian, David; Espinosa, Alejandra; Pol, Albert; Zorzano, Antonio; Cortes, Victor; Hernandez-Alvarez, Maria Isabel; Troncoso, RodrigoBackground and aim: The excessive accumulation of lipid droplets (LDs) is a defining characteristic of nonalcoholic fatty liver disease (NAFLD). The interaction between LDs and mitochondria is functionally important for lipid metabolism homeostasis. Exercise improves NAFLD, but it is not known if it has an effect on hepatic LD-mitochondria interactions. Here, we investigated the influence of exercise on LD-mitochondria interactions and its significance in the context of NAFLD. Approach and results: Mice were fed high-fat diet (HFD) or HFD-0.1 % methionine and choline-deficient diet (MCD) to emulate simple hepatic steatosis or non-alcoholic steatohepatitis, respectively. In both models, aerobic exercise decreased the size of LDs bound to mitochondria and the number of LD-mitochondria contacts. Analysis showed that the effects of exercise on HOMA-IR and liver triglyceride levels were independent of changes in body weight, and a positive correlation was observed between the number of LD-mitochondria contacts and NAFLD severity and with the lipid droplet size bound to mitochondria. Cellular fractionation studies revealed that ATP -coupled respiration and fatty acid oxidation (FAO) were greater in hepatic peridroplet mitochondria (PDM) from HFD-fed exercised mice than from equivalent sedentary mice. Finally, exercise increased FAO and mitofusin-2 abundance exclusively in PDM through a mechanism involving the curvature of mitochondrial membranes and the abundance of saturated lipids. Accordingly, hepatic mitofusin-2 ablation prevented exercise-induced FAO in PDM. Conclusions: This study demonstrates that aerobic exercise has beneficial effects in murine NAFLD models by lessening the interactions between hepatic LDs and mitochondria, and by decreasing LD size, correlating with a reduced severity of NAFLD. Additionally, aerobic exercise increases FAO in PDM and this process is reliant on Mfn-2 enrichment, which modifies LD-mitochondria communication.