Browsing by Author "Feuillet, Diane K."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemExploring the Stellar Age Distribution of the Milky Way Bulge Using APOGEE(2020) Hasselquist, Sten; Zasowski, Gail; Feuillet, Diane K.; Schultheis, Mathias; Nataf, David M.; Anguiano, Borja; Beaton, Rachael L.; Beers, Timothy C.; Cohen, Roger E.; Cunha, Katia; Fernandez-Trincado, Jose G.; Garcia-Hernandez, D. A.; Geisler, Doug; Holtzman, Jon A.; Johnson, Jennifer; Lane, Richard R.; Majewski, Steven R.; Bidin, Christian Moni; Nitschelm, Christian; Roman-Lopes, Alexandre; Schiavon, Ricardo; Smith, Verne V.; Sobeck, JenniferWe present stellar age distributions of the Milky Way bulge region using ages for similar to 6000 high-luminosity (log (g), metal-rich ([Fe/H] >= -0.5) bulge stars observed by the Apache Point Observatory Galactic Evolution Experiment. Ages are derived using The Cannon label-transfer method, trained on a sample of nearby luminous giants with precise parallaxes for which we obtain ages using a Bayesian isochrone-matching technique. We find that the metal-rich bulge is predominantly composed of old stars (>8 Gyr). We find evidence that the planar region of the bulge (vertical bar Z(GC)vertical bar <= 0.25 kpc) is enriched in metallicity, Z, at a faster rate (dZ/dt similar to 0.0034 Gyr(-1)) than regions farther from the plane (dZ/dt similar to 0.0013 Gyr(-1) at vertical bar Z(GC)vertical bar > 1.00 kpc). We identify a nonnegligible fraction of younger stars (age similar to 2-5 Gyr) at metallicities of +0.2 < [Fe/H] < +0.4. These stars are preferentially found in the plane (vertical bar Z(GC)vertical bar <= 0.25 kpc) and at R-cy approximate to 2-3 kpc, with kinematics that are more consistent with rotation than are the kinematics of older stars at the same metallicities. We do not measure a significant age difference between stars found inside and outside the bar. These findings show that the bulge experienced an initial starburst that was more intense close to the plane than far from the plane. Then, star formation continued at supersolar metallicities in a thin disk at 2 kpc less than or similar to R-cy less than or similar to 3 kpc until similar to 2 Gyr ago.
- ItemSpatial variations in the Milky Way disc metallicity-age relation(2019) Feuillet, Diane K.; Frankel, Neige; Lind, Karin; Frinchaboy, Peter M.; Garcia-Hernandez, D. A.; Lane, Richard R.; Nitschelm, Christian; Roman-Lopes, AlexandreStellar ages are a crucial component to studying the evolution of the Milky Way. Using Gaia DR2 distance estimates, it is now possible to estimate stellar ages for a larger volume of evolved stars through isochrone matching. This work presents [M/H]-age and [alpha/M]-age relations derived for different spatial locations in the Milky Way disc. These relations are derived by hierarchically modelling the star formation history of stars within a given chemical abundance bin. For the first time, we directly observe that significant variation is apparent in the [M/H]-age relation as a function of both Galactocentric radius and distance from the disc midplane. The [M/H]-age relations support claims that radial migration has a significant effect in the plane of the disc. Using the [M/H] bin with the youngest mean age at each radial zone in the plane of the disc, the present-day metallicity gradient is measured to be -0.059 +/- 0.010 dex kpc(-1), in agreement with Cepheids and young field stars. We find a vertically flared distribution of young stars in the outer disc, confirming predictions of models and previous observations. The mean age of the [M/H]-[alpha/M] distribution of the solar neighbourhood suggests that the high-[M/H] stars are not an evolutionary extension of the low-alpha sequence. Our observational results are important constraints to Galactic simulations and models of chemical evolution.