Browsing by Author "Farias, Monica A."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAsymptomatic herpes simplex virus brain infection elicits cellular senescence phenotypes in the central nervous system of mice suffering multiple sclerosis-like disease(2024) Duarte, Luisa F.; Villalobos, Veronica; Farias, Monica A.; Rangel-Ramirez, Ma. Andreina; Gonzalez-Madrid, Enrique; Navarro, Areli J.; Carbone-Schellman, Javier; Dominguez, Angelica; Alvarez, Alejandra; Riedel, Claudia A.; Bueno, Susan M.; Kalergis, Alexis M.; Caceres, Monica; Gonzalez, Pablo A.Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease affecting the central nervous system (CNS) in animals that parallels several clinical and molecular traits of multiple sclerosis in humans. Herpes simplex virus type 1 (HSV-1) infection mainly causes cold sores and eye diseases, yet eventually, it can also reach the CNS, leading to acute encephalitis. Notably, a significant proportion of healthy individuals are likely to have asymptomatic HSV-1 brain infection with chronic brain inflammation due to persistent latent infection in neurons. Because cellular senescence is suggested as a potential factor contributing to the development of various neurodegenerative disorders, including multiple sclerosis, and viral infections may induce a premature senescence state in the CNS, potentially increasing susceptibility to such disorders, here we examine the presence of senescence-related markers in the brains and spinal cords of mice with asymptomatic HSV-1 brain infection, EAE, and both conditions. Across all scenarios, we find a significant increases of senescence biomarkers in the CNS with some differences depending on the analyzed group. Notably, some senescence biomarkers are exclusively observed in mice with the combined conditions. These results indicate that asymptomatic HSV-1 brain infection and EAE associate with a significant expression of senescence biomarkers in the CNS.
- ItemLimited Heme Oxygenase Contribution to Modulating the Severity of Salmonella enterica serovar Typhimurium Infection(SPRINGER INTERNATIONAL PUBLISHING AG, 2022) Sebastian, Valentina P.; Moreno-Tapia, Daniela; Melo-Gonzalez, Felipe; Hernandez-Caceres, Maria P.; Salazar, Geraldyne A.; Pardo-Roa, Catalina; Farias, Monica A.; Vallejos, Omar P.; Schultz, Barbara M.; Morselli, Eugenia; Alvarez-Lobos, Manuel M.; Gonzalez, Pablo A.; Kalergis, Alexis M.; Bueno, Susan M.An important virulence trait of Salmonella enterica serovar Typhimurium (S. Typhimurium) is the ability to avoid the host immune response, generating systemic and persistent infections. Host cells play a crucial role in bacterial clearance by expressing the enzyme heme oxygenase 1 (Hmox1), which catalyzes the degradation of heme groups into Fe2+, biliverdin, and carbon monoxide (CO). The role of Hmox1 activity during S. Typhimurium infection is not clear and previous studies have shown contradictory results. We evaluated the effect of pharmacologic modulation of Hmox1 in a mouse model of acute and persistent S. Typhimurium infection by administering the Hmox1 activity inductor cobalt protoporphyrin-IX (CoPP) or inhibitor tin protoporphyrin-IX (SnPP) before infection. To evaluate the molecular mechanism involved, we measured the colocalization of S. Typhimurium and autophagosome and lysosomal markers in macrophages. Administering CoPP reduced the bacterial burden in organs of mice 5 days post-infection, while SnPP-treated mice showed bacterial loads similar to vehicle-treated mice. Furthermore, CoPP reduced bacterial loads when administered after infection in macrophages in vitro and in a persistent infection model of S. Typhimurium in vivo, while tin protoporphyrin-IX (SnPP) treatment resulted in a bacterial burden similar to vehicle-treated controls. However, we did not observe significant differences in co-localization of green fluorescent protein (GFP)-labeled S. Typhimurium with the autophagic vesicles marker microtubule-associated protein 1A/1B-light chain 3 (LC3) and the lysosomal marker lysosomal-associated membrane protein 1 (LAMP-1) in macrophages treated with CoPP. Our results suggest that CoPP can enhance antimicrobial activity in response to Salmonella infection, reducing bacterial dissemination and persistence in mice, in a CO and autophagy- independent manner.
- ItemPharmacological Inhibition of IRE-1 Alpha Activity in Herpes Simplex Virus Type 1 and Type 2-Infected Dendritic Cells Enhances T Cell Activation(2022) Tognarelli, Eduardo I.; Retamal-Diaz, Angello; Farias, Monica A.; Duarte, Luisa F.; Palomino, Tomas F.; Ibanez, Francisco J.; Riedel, Claudia A.; Kalergis, Alexis M.; Bueno, Susan M.; Gonzalez, Pablo A.Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections are life-long and highly prevalent in the human population. These viruses persist in the host, eliciting either symptomatic or asymptomatic infections that may occur sporadically or in a recurrent manner through viral reactivations. Clinical manifestations due to symptomatic infection may be mild such as orofacial lesions, but may also translate into more severe diseases, such as ocular infections that may lead to blindness and life-threatening encephalitis. A key feature of herpes simplex viruses (HSVs) is that they have evolved molecular determinants that hamper numerous components of the host's antiviral innate and adaptive immune system. Importantly, HSVs infect and negatively modulate the function of dendritic cells (DCs), by inhibiting their T cell-activating capacity and eliciting their apoptosis after infection. Previously, we reported that HSV-2 activates the splicing of the mRNA of XBP1, which is related to the activity of the unfolded protein response (UPR) factor Inositol-Requiring Enzyme 1 alpha (IRE-1 alpha). Here, we sought to evaluate if the activation of the IRE-1 alpha pathway in DCs upon HSV infection may be related to impaired DC function after infection with HSV-1 or HSV-2. Interestingly, the pharmacological inhibition of the endonuclease activity of IRE-1 alpha in HSV-1- and HSV-2-infected DCs significantly reduced apoptosis in these cells and enhanced their capacity to migrate to lymph nodes and activate virus-specific CD4(+) and CD8(+) T cells. These findings suggest that the activation of the IRE-1 alpha-dependent UPR pathway in HSV-infected DCs may play a significant role in the negative effects that these viruses exert over these cells and that the modulation of this signaling pathway may be relevant for enhancing the function of DCs upon infection with HSVs.