Browsing by Author "Fan, Lulu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemINFRARED SPECTRAL ENERGY DISTRIBUTION DECOMPOSITION OF WISE-SELECTED, HYPERLUMINOUS HOT DUST-OBSCURED GALAXIES(2016) Fan, Lulu; Han, Yunkun; Nikutta, Robert; Drouart, Guillaume; Knudsen, Kirsten K.We utilize a Bayesian approach to fit the observed mid-IR-to-submillimeter/millimeter spectral energy distributions (SEDs) of 22 WISE-selected and submillimeter-detected, hyperluminous hot dust-obscured galaxies (Hot DOGs), with spectroscopic redshift ranging from 1.7 to 4.6. We compare the Bayesian evidence of a torus plusgraybody (Torus+GB) model with that of a torus-only (Torus) model and find that the Torus+GB model has higher Bayesian evidence for all 22 Hot DOGs than the torus-only model, which presents strong evidence in favor of the Torus+GB model. By adopting the Torus+GB model, we decompose the observed IR SEDs of Hot DOGs into torus and cold dust components. The main results are as follows. (1) Hot DOGs in our submillimeter-detected sample are hyperluminous (L-IR >= 10(13) L-circle dot), with torus emission dominating the IR energy output. However, cold dust emission is non-negligible, contributing on average similar to 24% of total IR luminosity. (2) Compared to QSO and starburst SED templates, the median SED of Hot DOGs shows the highest luminosity ratio between mid-IR and submillimeter at rest frame, while it is very similar to that of QSOs at similar to 10-50 mu m, suggesting that the heating sources of Hot DOGs should be buried AGNs. (3) Hot DOGs have high dust temperatures (T-dust similar to 72 K) and high IR luminosity of cold dust. The T-dust-L-IR relation of Hot DOGs suggests that the increase in IR luminosity for Hot DOGs is mostly due to the increase of the dust temperature, rather than dust mass. Hot DOGs have lower dust masses than submillimeter galaxies (SMGs) and QSOs within a similar redshift range. Both high IR luminosity of cold dust and relatively low dust mass in Hot DOGs can be expected by their relatively high dust temperatures. (4) Hot DOGs have high dust-covering factors (CFs), which deviate from the previously proposed trend of the dust CF decreasing with increasing bolometric luminosity. Finally, we can reproduce the observed properties in Hot DOGs by employing a physical model of galaxy evolution. This result suggests that Hot DOGs may lie at or close to peaks of both star formation and black hole growth histories, and represent a transit phase during the evolutions of massive galaxies, transforming them from the dusty starburst-dominated phase to the optically bright QSO phase.
- ItemPiercing through Highly Obscured and Compton-thick AGNs in the Chandra Deep Fields. II. Are Highly Obscured AGNs the Missing Link in the Merger-triggered AGN-Galaxy Coevolution Models?(2020) Li, Junyao; Xue, Yongquan; Sun, Mouyuan; Brandt, William N.; Yang, Guang; Vito, Fabio; Tozzi, Paolo; Vignali, Cristian; Comastri, Andrea; Shu, Xinwen; Fang, Guanwen; Fan, Lulu; Luo, Bin; Chen, Chien-Ting; Zheng, XuechenBy using a large, highly obscured ( N-H > 10(23) cm(-2)) active galactic nucleus (AGN) sample (294 sources at z similar to 0-5) selected from detailed X-ray spectral analyses in the deepest Chandra.surveys, we explore distributions of these X-ray sources in various optical/infrared/X-ray color-color diagrams and their host-galaxy properties, aiming at characterizing the nuclear obscuration environment and the triggering mechanism of highly obscured AGNs. We find that the refined Infrared Array Camera (IRAC) color-color diagram fails to identify the majority of X-ray-selected, highly obscured AGNs, even for the most luminous sources with log L-X(erg s(-1)) > 44. Over 80% of our sources will not be selected as heavily obscured candidates using the flux ratio of f(24 mu m)/f(R) > 1000 and R - K > 4.5 criteria, implying complex origins and conditions for the obscuring materials that are responsible for the heavy X-ray obscuration. The average star formation rate (SFR) of highly obscured AGNs is similar to that of stellar mass-(M*-) and z-controlled normal galaxies, while a lack of quiescent hosts is observed for the former. Partial correlation analyses imply that highly obscured AGN activity (traced by L-X) appears to be more fundamentally related to M*, and no dependence of N-H on either M* or SFR is detected. Morphology analyses reveal that 61% of our sources have a significant disk component, while only similar to 27% of them exhibit irregular morphological signatures. These findings together point toward a scenario where secular processes (e.g., galacticdisk instabilities), instead of mergers, are most probable to be the leading mechanism that triggers accretion activities of X-ray-selected, highly obscured AGNs.
