• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ezquer, Marcelo"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Betaine-urea deep eutectic solvent improves imipenem antibiotic activity
    (2022) Olivares, Belen; Martinez, Fabian A.; Ezquer, Marcelo; Morales, Bernardo J.; Fuentes, Ignacia; Calvo, Margarita; Campodonico, Paola R.
    Beta-lactam antibiotics are highly unstable in aqueous media, which may lead to subclinical concentrations, antimicrobial resistance and therapeutic failure. In previous work we demonstrated that a natural deep eutectic solvent consisting of betaine and urea (BU) is capable of improving the stability of some beta-lactams, including imipenem (IMP), the most unstable antibiotic of the family. Here, IMP-BU was studied by selective protonic Nuclear Overhauser Effect Spectroscopy Magnetic Resonance (H-1 NOESY NMR) to gain insight into the mechanism by which BU protects IMP. The kinetics of IMP release and its antibacterial activity were evaluated in diffusional, time-kill and antibiofilm assays. It was found that BU is a protective matrix which allows a fast release of IMP, resulting in superior antibacterial activity when compared to IMP in aqueous solution, both against bacteria growing in planktonic form and in biofilms. Furthermore, it was shown that BU is nontoxic when evaluated in fibroblast primary cell cultures and in organotypic skin cultures, and is not immunogenic when tested in vitro in macrophage cultures, suggesting that BU has potential application as a biomaterial or excipient. (C) 2022 Published by Elsevier B.V.
  • Loading...
    Thumbnail Image
    Item
    Characterisation of the pathophysiology of neuropathy and sensory dysfunction in a mouse model of recessive dystrophic epidermolysis bullosa
    (LIPPINCOTT WILLIAMS & WILKINS, 2022) Schmidt, Daniela; Díaz Céspedes, Paula Estefany; Muñoz, Daniela; Espinoza Mihovilovic, Fernanda Mileva; Nystrom, Alexander; Fuentes, Ignacia; Ezquer, Marcelo; Bennett, David L.; Calvo Bascuñán, Margarita
    Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genetic condition in which mutations in the type VII collagen gene (COL7A1) lead to decreased expression of this anchoring protein of the skin, causing the loss of stability at the dermo-epidermal junction. Most patients with RDEB experience neuropathic pain and itch due to the development of a small fibre neuropathy, characterised by decreased intraepidermal innervation and thermal hypoaesthesia. To understand the physiopathology of this neuropathy, we used a mouse model of RDEB (Col7a1(flNeo/flNeo)) and performed a detailed characterisation of the somatosensory system. Col7a1(flNeo/flNeo) mice showed a decrease in heat sensitivity, an increase in spontaneous scratching, and a significant decrease in intraepidermal nerve fibre density in the hindpaw; these changes were distal because there was no significant loss of unmyelinated or myelinated fibres in the nerve trunk. Of interest, we observed a decrease in axon diameter in both myelinated and unmyelinated fibres. This axonal damage was not associated with inflammation of the dorsal root ganglion or central projection targets at the time of assessment. These results suggest that in RDEB, there is a distal degeneration of axons produced by exclusive damage of small fibres in the epidermis, and in contrast with traumatic and acute neuropathies, it does not induce sustained neuroinflammation. Thus, this animal model emphasizes the importance of a healthy cutaneous environment for maintenance of epidermal innervation and faithfully replicates the pathology in humans, offering the opportunity to use this model in the development of treatments for pain for patients with RDEB.
  • Loading...
    Thumbnail Image
    Item
    High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration : Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis
    (2016) Abrigo, Johanna; Rivera, Juan Carlos; Aravena, Javier; Cabrera, Daniel; Simon, Felipe; Ezquer, Fernando; Ezquer, Marcelo; Cabello Verrugio, Claudio Alejandro
  • Loading...
    Thumbnail Image
    Item
    Lactadherin immunoblockade in small extracellular vesicles inhibits sEV-mediated increase of pro-metastatic capacities
    (2024) Durán-Jara, Eduardo; Campo, Matías del ; Gutiérrez, Valentina; Wichmann Pérez, Ignacio Alberto; Trigo, César; Ezquer, Marcelo; Lobos-González, Lorena
    Background: Tumor-derived small extracellular vesicles (sEVs) can promote tumorigenic and metastatic capacities in less aggressive recipient cells mainly through the biomolecules in their cargo. However, despite recent advances, the specific molecules orchestrating these changes are not completely defined. Lactadherin is a secreted glycoprotein typically found in the milk fat globule membrane. Its overexpression has been associated with increased tumorigenesis and metastasis in breast cancer (BC) and other tumors. However, neither its presence in sEVs secreted by BC cells, nor its role in sEV-mediated intercellular communication have been described. The present study focused on the role of lactadherin-containing sEVs from metastatic MDA-MB-231 triple-negative BC (TNBC) cells (sEV-MDA231) in the promotion of pro-metastatic capacities in non-tumorigenic and non-metastatic recipient cells in vitro, as well as their pro-metastatic role in a murine model of peritoneal carcinomatosis. Results: We show that lactadherin is present in sEVs secreted by BC cells and it is higher in sEV-MDA231 compared with the other BC cell-secreted sEVs measured through ELISA. Incubation of non-metastatic recipient cells with sEV-MDA231 increases their migration and, to some extent, their tumoroid formation capacity but not their anchorage-independent growth. Remarkably, lactadherin blockade in sEV-MDA231 results in a significant decrease of those sEV-mediated changes in vitro. Similarly, intraperitoneally treatment of mice with MDA-MB-231 BC cells and sEV-MDA231 greatly increase the formation of malignant ascites and tumor micronodules, effects that were significantly inhibited when lactadherin was previously blocked in those sEV-MDA231. Conclusions: As to our knowledge, our study provides the first evidence on the role of lactadherin in metastatic BC cell-secreted sEVs as promoter of: (i) metastatic capacities in less aggressive recipient cells, and ii) the formation of malignant ascites and metastatic tumor nodules. These results increase our understanding on the role of lactadherin in sEVs as promoter of metastatic capacities which can be used as a therapeutic option for BC and other malignancies.
  • Loading...
    Thumbnail Image
    Item
    Maintenance of chronicity signatures in fibroblasts isolated from recessive dystrophic epidermolysis bullosa chronic wound dressings under culture conditions
    (2023) De Gregorio, Cristian; Catalán, Evelyng; Garrido, Gabriel; Morandé, Pilar; Bennett, Jimena C.; Muñoz, Catalina; Cofré, Glenda; Huang, Ya-Lin; Cuadra, Bárbara; Murgas, Paola; Calvo Bascuñan, Margarita; Altermatt Couratier, Fernando René; Yubero, María J.; Palisson, Francis; South, Andrew P.; Ezquer, Marcelo; Fuentes, Ignacia
    Background Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a rare inherited skin disease caused by variants in the COL7A1 gene, coding for type VII collagen (C7), an important component of anchoring fibrils in the basement membrane of the epidermis. RDEB patients suffer from skin fragility starting with blister formation and evolving into chronic wounds, inflammation and skin fibrosis, with a high risk of developing aggressive skin carcinomas. Restricted therapeutic options are limited by the lack of in vitro models of defective wound healing in RDEB patients. Results In order to explore a more efficient, non-invasive in vitro model for RDEB studies, we obtained patient fibroblasts derived from discarded dressings) and examined their phenotypic features compared with fibroblasts derived from non-injured skin of RDEB and healthy-donor skin biopsies. Our results demonstrate that fibroblasts derived from RDEB chronic wounds (RDEB-CW) displayed characteristics of senescent cells, increased myofibroblast differentiation, and augmented levels of TGF-β1 signaling components compared to fibroblasts derived from RDEB acute wounds and unaffected RDEB skin as well as skin from healthy-donors. Furthermore, RDEB-CW fibroblasts exhibited an increased pattern of inflammatory cytokine secretion (IL-1β and IL-6) when compared with RDEB and control fibroblasts. Interestingly, these aberrant patterns were found specifically in RDEB-CW fibroblasts independent of the culturing method, since fibroblasts obtained from dressing of acute wounds displayed a phenotype more similar to fibroblasts obtained from RDEB normal skin biopsies. Conclusions Our results show that in vitro cultured RDEB-CW fibroblasts maintain distinctive cellular and molecular characteristics resembling the inflammatory and fibrotic microenvironment observed in RDEB patients’ chronic wounds. This work describes a novel, non-invasive and painless strategy to obtain human fibroblasts chronically subjected to an inflammatory and fibrotic environment, supporting their use as an accessible model for in vitro studies of RDEB wound healing pathogenesis. As such, this approach is well suited to testing new therapeutic strategies under controlled laboratory conditions.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback