• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Espinoza, Francisco"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    CLASS Data Pipeline and Maps for 40 GHz Observations through 2022
    (2023) Li, Yunyang; Eimer, Joseph R.; Osumi, Keisuke; Appel, John W.; Brewer, Michael K.; Ali, Aamir; Bennett, Charles L.; Bruno, Sarah Marie; Bustos, Ricardo; Chuss, David T.; Cleary, Joseph; Couto, Jullianna Denes; Dahal, Sumit; Datta, Rahul; Denis, Kevin L.; Dunner, Rolando; Espinoza, Francisco; Essinger-Hileman, Thomas; Rojas, Pedro Fluxa; Harrington, Kathleen; Iuliano, Jeffrey; Karakla, John; Marriage, Tobias A.; Miller, Nathan J.; Novack, Sasha; Nunez, Carolina; Petroff, Matthew A.; Reeves, Rodrigo A.; Rostem, Karwan; Shi, Rui; Valle, Deniz A. N.; Watts, Duncan J.; Weiland, Janet L.; Wollack, Edward J.; Xu, Zhilei; Zeng, Lingzhen; CLASS Collaboration
    The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background over 75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. This paper describes the CLASS data pipeline and maps for 40 GHz observations conducted from 2016 August to 2022 May. We demonstrate how well the CLASS survey strategy, with rapid (similar to 10 Hz) front-end modulation, recovers the large-scale Galactic polarization signal from the ground: the mapping transfer function recovers similar to 67% (85%) of EE and BB (VV) power at l = 20 and similar to 35% (47%) at l = 10. We present linear and circular polarization maps over 75% of the sky. Simulations based on the data imply the maps have a white noise level of 110 mu Karcmin and correlated noise component rising at low-l as l -2.4. The transfer-function-corrected low-l component is comparable to the white noise at the angular knee frequencies of l approximate to 18 (linear polarization) and l approximate to 12 (circular polarization). Finally, we present simulations of the level at which expected sources of systematic error bias the measurements, finding subpercent bias for the Lambda cold dark matter EE power spectra. Bias from E-to-B leakage due to the data reduction pipeline and polarization angle uncertainty approaches the expected level for an r = 0.01 BB power spectrum. Improvements to the instrument calibration and the data pipeline will decrease this bias.
  • No Thumbnail Available
    Item
    Four-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: On-sky Receiver Performance at 40, 90, 150, and 220 GHz Frequency Bands
    (2022) Dahal, Sumit; Appel, John W.; Datta, Rahul; Brewer, Michael K.; Ali, Aamir; Bennett, Charles L.; Bustos, Ricardo; Chan, Manwei; Chuss, David T.; Cleary, Joseph; Couto, Jullianna D.; Denis, Kevin L.; Dunner, Rolando; Eimer, Joseph; Espinoza, Francisco; Essinger-Hileman, Thomas; Golec, Joseph E.; Harrington, Kathleen; Helson, Kyle; Iuliano, Jeffrey; Karakla, John; Li, Yunyang; Marriage, Tobias A.; McMahon, Jeffrey J.; Miller, Nathan J.; Novack, Sasha; Nunez, Carolina; Osumi, Keisuke; Padilla, Ivan L.; Palma, Gonzalo A.; Parker, Lucas; Petroff, Matthew A.; Reeves, Rodrigo; Rhoades, Gary; Rostem, Karwan; Valle, Deniz A. N.; Watts, Duncan J.; Weiland, Janet L.; Wollack, Edward J.; Xu, Zhilei
    The Cosmology Large Angular Scale Surveyor (CLASS) observes the polarized cosmic microwave background (CMB) over the angular scales of 1 degrees less than or similar to theta <= 90 degrees with the aim of characterizing primordial gravitational waves and cosmic reionization. We report on the on-sky performance of the CLASS Q-band (40 GHz), W-band (90 GHz), and dichroic G-band (150/220 GHz) receivers that have been operational at the CLASS site in the Atacama desert since 2016 June, 2018 May, and 2019 September, respectively. We show that the noise-equivalent power measured by the detectors matches the expected noise model based on on-sky optical loading and lab-measured detector parameters. Using Moon, Venus, and Jupiter observations, we obtain power to antenna temperature calibrations and optical efficiencies for the telescopes. From the CMB survey data, we compute instantaneous array noise-equivalent-temperature sensitivities of 22, 19, 23, and 71 mu K-cmp root s for the 40, 90, 150, and 220 GHz frequency bands, respectively. These noise temperatures refer to white noise amplitudes, which contribute to sky maps at all angular scales. Future papers will assess additional noise sources impacting larger angular scales.
  • No Thumbnail Available
    Item
    Safety and efficacy of clinical-grade, cryopreserved menstrual blood mesenchymal stromal cells in experimental acute respiratory distress syndrome
    (2023) Alcayaga-Miranda, Francisca; Silva, Johnatas Dutra; Parada, Nicol; da Silva, Luisa Helena Andrade; Cruz, Fernanda Ferreira; Utreras, Yildy; Hidalgo, Yessia; Cadiz, Maria Ignacia; Limonchi, Rafael Tapia; Espinoza, Francisco; Bruhn, Alejandro; Khoury, Maroun; Rocco, Patricia R. M.; Cuenca, Jimena
    Background: Treatment for critical care conditions, such as acute respiratory distress syndrome (ARDS), requires ready-to-administer injectable mesenchymal stromal cells (MSCs). A validated cryopreserved therapy based on MSCs derived from menstrual blood (MenSCs) is an attractive option that offers advantages over freshly cultured cells and allows its use as an off-the-shelf therapy in acute clinical conditions. The main goal of this study is to provide evidence on the impact of cryopreservation on different biological functions of MenSCs and to determine the optimal therapeutic dose, safety, and efficacy profile of clinical-grade, cryopreserved (cryo)-MenSCs in experimental ARDS.Methods: Biological functions of fresh versus cryo-MenSCs were compared in vitro. The effects of cryo-MenSCs therapy were evaluated in vivo in ARDS-induced (Escherichia coli lipopolysaccharide) C57BL/6 mice. After 24 h, the animals were treated with five doses ranging from 0.25x10(5) to 1.25x10(6) cells/animal. At 2 and 7 days after induction of ARDS, safety and efficacy were evaluated.Results: Clinical-grade cryo-MenSCs injections improved lung mechanics and reduced alveolar collapse, tissue cellularity, and remodelling, decreasing elastic and collagen fiber content in alveolar septa. In addition, administration of these cells modulated inflammatory mediators and promoted pro-angiogenic and anti-apoptotic effects in lung-injured animals. More beneficial effects were observed with an optimal dose of 4x10(6) cells/Kg than with higher or lower doses.Conclusion: From a translational perspective, the results showed that clinical-grade cryopreserved MenSCs retain their biological properties and exert a therapeutic effect in mild to moderate experimental ARDS. The optimal therapeutic dose was well-tolerated, safe, and effective, favouring improved lung function. These findings support the potential value of an off-the-shelf MenSCs-based product as a promising therapeutic strategy for treating ARDS.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback