Browsing by Author "Escapil-Inchauspe, Paul"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemBi-parametric operator preconditioning(2021) Escapil-Inchauspe, Paul; Jerez-Hanckes, CarlosWe extend the operator preconditioning framework Hiptmair (2006) [10] to Petrov-Galerkin methods while accounting for parameter-dependent perturbations of both variational forms and their preconditioners, as occurs when performing numerical approximations. By considering different perturbation parameters for the original form and its preconditioner, our bi-parametric abstract setting leads to robust and controlled schemes. For Hilbert spaces, we derive exhaustive linear and super-linear convergence estimates for iterative solvers, such as h-independent convergence bounds, when preconditioning with low-accuracy or, equivalently, with highly compressed approximations.
- ItemHELMHOLTZ SCATTERING BY RANDOM DOMAINS: FIRST-ORDER SPARSE BOUNDARY ELEMENT APPROXIMATION(2020) Escapil-Inchauspe, Paul; Jerez-Hanckes, CarlosWe consider the numerical solution of time-harmonic acoustic scattering by obstacles with uncertain geometries for Dirichlet, Neumann, impedance, and transmission boundary conditions. In particular, we aim to quantify diffracted fields originated by small stochastic perturbations of a given relatively smooth nominal shape. Using first-order shape Taylor expansions, we derive tensor deterministic first-kind boundary integral equations for the statistical moments of the scattering problems considered. These are then approximated by sparse tensor Galerkin discretizations via the combination technique [M. Griebel, M. Schneider, and C. Zenger, A combination technique for the solution of sparse grid problems, in Iterative Methods in Linear Algebra, P. de Groen and P. Beauwens, eds., Elsevier, Amsterdam, 1992, pp. 263-281; H. Harbrecht, M. Peters, and M. Siebenmorgen, J. Comput. Phys., 252 (2013), pp. 128-141]. We supply extensive numerical experiments confirming the predicted error convergence rates with polylogarithmic growth in the number of degrees of freedom and accuracy in approximation of the moments. Moreover, we discuss implementation details such as preconditioning to finally point out further research avenues.
