• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Engelen, Aschwin H."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Differentiation of haploid and diploid fertilities in Gracilaria chilensis affect ploidy ratio
    (2018) Huanel, Oscar R.; Vieira, Vasco M. N. C. S.; Engelen, Aschwin H.; Guillemin, Marie-Laure.
    Abstract Background Algal isomorphic biphasic life cycles alternate between free-living diploid (tetrasporophytes) and haploid (dioicious gametophytes) phases and the hypotheses explaining their maintenance are still debated. Classic models state that conditional differentiation between phases is required for the evolutionary stability of biphasic life cycles while other authors proposed that the uneven ploidy abundances observed in the field are explained by their cytological differences in spore production. Results We monitored the state and fate of individuals of the red seaweed Gracilaria chilensis periodically for 3 years in five intertidal pools from two sites with distinct conditions. We tested for differentiation in fecundity and spore survival among the gametophyte males and females (haploids) and the tetrasporophytes (diploids). We tested for the influence of fecundity and spore survival on the observed uneven ploidy abundances in recruits. The probability of a frond becoming fecund was size-dependent, highest for the haploid males and lowest for the haploid females, with the diploids displaying intermediate probabilities. Fecund diploids released more tetraspores than carpospores released by the haploid females. Spore survival depended on ploidy and on the local density of co-habiting adult fronds. An advantage of diploid over haploid germlings was observed at very low and very high adult fronds densities. Conclusions Neither spore production nor spore survival determined the highly variable ploidy ratio within G. chilensis recruits. This result invalidates the hypothesis of natural cytological differences in spore production as the only driver of uneven field ploidy abundances in this species. Diploid spores (carpospores) survived better than haploid spores (tetraspores), especially in locations and time periods that were associated with the occurrence of strong biotic and abiotic stressors. We hypothesise that carpospore survival is higher due to support by their haploid female progenitors passing-on nutrients and chemical compounds improving survival under stressful conditions.Abstract Background Algal isomorphic biphasic life cycles alternate between free-living diploid (tetrasporophytes) and haploid (dioicious gametophytes) phases and the hypotheses explaining their maintenance are still debated. Classic models state that conditional differentiation between phases is required for the evolutionary stability of biphasic life cycles while other authors proposed that the uneven ploidy abundances observed in the field are explained by their cytological differences in spore production. Results We monitored the state and fate of individuals of the red seaweed Gracilaria chilensis periodically for 3 years in five intertidal pools from two sites with distinct conditions. We tested for differentiation in fecundity and spore survival among the gametophyte males and females (haploids) and the tetrasporophytes (diploids). We tested for the influence of fecundity and spore survival on the observed uneven ploidy abundances in recruits. The probability of a frond becoming fecund was size-dependent, highest for the haploid males and lowest for the haploid females, with the diploids displaying intermediate probabilities. Fecund diploids released more tetraspores than carpospores released by the haploid females. Spore survival depended on ploidy and on the local density of co-habiting adult fronds. An advantage of diploid over haploid germlings was observed at very low and very high adult fronds densities. Conclusions Neither spore production nor spore survival determined the highly variable ploidy ratio within G. chilensis recruits. This result invalidates the hypothesis of natural cytological differences in spore production as the only driver of uneven field ploidy abundances in this species. Diploid spores (carpospores) survived better than haploid spores (tetraspores), especially in locations and time periods that were associated with the occurrence of strong biotic and abiotic stressors. We hypothesise that carpospore survival is higher due to support by their haploid female progenitors passing-on nutrients and chemical compounds improving survival under stressful conditions.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback