• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Drewitz, Alexander"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Asymptotic direction in random walks in random environment revisited
    (BRAZILIAN STATISTICAL ASSOCIATION, 2010) Drewitz, Alexander; Ramirez, Alejandro F.
    Consider a random walk {X(n) : n >= 0} in an elliptic i.i.d. environment in dimensions d >= 2 and call P(0) its averaged law starting from 0. Given a direction I is an element of S(d-1), A(l) = {lim(n ->infinity) Xn . l = infinity} is called the event that the random walk is transient in the direction I. Recently Simenhaus proved that the following are equivalent: the random walk is transient in the neighborhood of a given direction; P(0)-a.s. there exists a deterministic asymptotic direction; the random walk is transient in any direction contained in the open half space defined by this asymptotic direction. Here we prove that the following are equivalent: P(0)(A(l) boolean OR A(-l)) = 1 in the neighborhood of a given direction; there exists an asymptotic direction v such that P(0) (A(upsilon) boolean OR A(-upsilon)) = 1 and P(0)-a.s we have lim(n ->infinity) X(n)/vertical bar X(n)vertical bar = 1(A upsilon)upsilon - 1(A-upsilon)upsilon; P(0) (A(l) boolean OR A(-l)) = 1 if and only if l . upsilon not equal 0. Furthermore, we give a review of some open problems.
  • Loading...
    Thumbnail Image
    Item
    Level 1 quenched large deviation principle for random walk in dynamic random environment
    (2013) Campos, David; Drewitz, Alexander; Ramírez Chuaqui, Alejandro; Rassoul-Agha, Firas; Seppalainen, Timo
  • Loading...
    Thumbnail Image
    Item
    Quenched exit estimates and ballisticity conditions for higher-dimensional random walk in random environment
    (2012) Drewitz, Alexander; Ramírez Chuaqui, Alejandro

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback