Browsing by Author "Dressing, Courtney D."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Item197 CANDIDATES AND 104 VALIDATED PLANETS IN K2's FIRST FIVE FIELDS(2016) Crossfield, Ian J. M.; Ciardi, David R.; Petigura, Erik A.; Sinukoff, Evan; Schlieder, Joshua E.; Howard, Andrew W.; Beichman, Charles A.; Isaacson, Howard; Dressing, Courtney D.; Christiansen, Jessie L.; Fulton, Benjamin J.; Lepine, Sebastien; Weiss, Lauren; Hirsch, Lea; Livingston, John; Baranec, Christoph; Law, Nicholas M.; Riddle, Reed; Ziegler, Carl; Howell, Steve B.; Horch, Elliott; Everett, Mark; Teske, Johanna; Martinez, Arturo O.; Obermeier, Christian; Benneke, Bjorn; Scott, Nic; Deacon, Niall; Aller, Kimberly M.; Hansen, Brad M. S.; Mancini, Luigi; Ciceri, Simona; Brahm, Rafael; Jordan, Andres; Knutson, Heather A.; Henning, Thomas; Bonnefoy, Michael; Liu, Michael C.; Crepp, Justin R.; Lothringer, Joshua; Hinz, Phil; Bailey, Vanessa; Skemer, Andrew; Defrere, DenisWe present 197 planet candidates discovered using data from the first year of the NASA K2 mission (Campaigns 0-4), along with the results of an intensive program of photometric analyses, stellar spectroscopy, high-resolution imaging, and statistical validation. We distill these candidates into sets of 104 validated planets (57 in multi-planet systems), 30 false positives, and 63 remaining candidates. Our validated systems span a range of properties, with median values of R-P = 2.3 R-circle plus, P = 8.6 days, T-eff = 5300 K, and Kp = 12.7 mag. Stellar spectroscopy provides precise stellar and planetary parameters for most of these systems. We show that K2 has increased by 30% the number of small planets known to orbit moderately bright stars (1-4 R-circle plus, Kp = 9-13. mag). Of particular interest are 76 planets smaller than 2 R-circle plus, 15 orbiting stars brighter than Kp = 11.5. mag, 5 receiving Earth-like irradiation levels, and several multi-planet systems-including 4 planets orbiting the M dwarf K2-72 near mean-motion resonances. By quantifying the likelihood that each candidate is a planet we demonstrate that our candidate sample has an overall false positive rate of 15%-30%, with rates substantially lower for small candidates (<2 R-circle plus) and larger for candidates with radii >8 R-circle plus and/or with P < 3 days. Extrapolation of the current planetary yield suggests that K2 will discover between 500 and 1000 planets in its planned four-year mission, assuming sufficient follow-up resources are available. Efficient observing and analysis, together with an organized and coherent follow-up strategy, are essential for maximizing the efficacy of planet-validation efforts for K2, TESS, and future large-scale surveys.
- ItemMass determination of two Jupiter-sized planets orbiting slightly evolved stars: TOI-2420 b and TOI-2485 b(2024) Carleo, Ilaria; Barragan, Oscar; Persson, Carina M.; Fridlund, Malcolm; Lam, Kristine W. F.; Messina, Sergio; Gandolfi, Davide; Smith, Alexis M. S.; Johnson, Marshall C.; Cochran, William; Osborne, Hannah L. M.; Brahm, Rafael; Ciardi, David R.; Collins, Karen A.; Everett, Mark E.; Giacalone, Steven; Guenther, Eike W.; Hatzes, Artie; Hellier, Coel; Horner, Jonathan; Kabath, Petr; Korth, Judith; MacQueen, Phillip; Masseron, Thomas; Murgas, Felipe; Nowak, Grzegorz; Rodriguez, Joseph E.; Watkins, Cristilyn N.; Wittenmyer, Rob; Zhou, George; Ziegler, Carl; Bieryla, Allyson; Boyd, Patricia T.; Clark, Catherine A.; Dressing, Courtney D.; Eastman, Jason D.; Eberhardt, Jan; Endl, Michael; Espinoza, Nestor; Fausnaugh, Michael; Guerrero, Natalia M.; Henning, Thomas; Hesse, Katharine; Hobson, Melissa J.; Howell, Steve B.; Jordan, Andres; Latham, David W.; Lund, Michael B.; Mireles, Ismael; Narita, Norio; Tala Pinto, Marcelo; Pugh, Teznie; Quinn, Samuel N.; Ricker, George; Rodriguez, David R.; Rojas, Felipe I.; Rose, Mark E.; Rudat, Alexander; Sarkis, Paula; Savel, Arjun B.; Schlecker, Martin; Schwarz, Richard P.; Seager, Sara; Shporer, Avi; Smith, Jeffrey C.; Stassun, Keivan G.; Stockdale, Chris; Trifonov, Trifon; Vanderspek, Roland; Winn, Joshua N.; Wright, DuncanContext. Hot and warm Jupiters might have undergone the same formation and evolution path, but the two populations exhibit different distributions of orbital parameters. This challenges our understanding of their actual origin. Aims. We report the results of our warm Jupiters survey, which was carried out with the CHIRON spectrograph within the KESPRINT collaboration. We addressed the question of the population origin by studying two planets that might help to bridge the gap between the two populations. Methods. We confirm two planets and determine their mass. One is a hot Jupiter (with an orbital period shorter than 10 days), TOI-2420 b, and the other is a warm Jupiter, TOI-2485 b. We analyzed them using a wide variety of spectral and photometric data in order to characterize these planetary systems. Results. We found that TOI-2420 b has an orbital period of P-b=5.8 days, a mass of M-b=0.9 M-J, and a radius of R-b=1.3 R-J, with a planetary density of 0.477 g cm(-3). TOI-2485 b has an orbital period of P-b=11.2 days, a mass of M-b=2.4 M-J, and a radius of R-b=1.1 R-J with a density of 2.36 g cm(-3). Conclusions. With the current parameters, the migration history for TOI-2420 b and TOI-2485 b is unclear: Scenarios of a high-eccentricity migration cannot be ruled out, and the characteristics of TOI-2485 b even support this scenario.
- ItemTESS Delivers Five New Hot Giant Planets Orbiting Bright Stars from the Full-frame Images(2021) Rodriguez, Joseph E.; Quinn, Samuel N.; Zhou, George; Vanderburg, Andrew; Nielsen, Louise D.; Wittenmyer, Robert A.; Brahm, Rafael; Reed, Phillip A.; Huang, Chelsea X.; Vach, Sydney; Ciardi, David R.; Oelkers, Ryan J.; Stassun, Keivan G.; Hellier, Coel; Gaudi, B. Scott; Eastman, Jason D.; Collins, Karen A.; Bieryla, Allyson; Christian, Sam; Latham, David W.; Carleo, Ilaria; Wright, Duncan J.; Matthews, Elisabeth; Gonzales, Erica J.; Ziegler, Carl; Dressing, Courtney D.; Howell, Steve B.; Tan, Thiam-Guan; Wittrock, Justin; Plavchan, Peter; McLeod, Kim K.; Baker, David; Wang, Gavin; Radford, Don J.; Schwarz, Richard P.; Esposito, Massimiliano; Ricker, George R.; Vanderspek, Roland K.; Seager, Sara; Winn, Joshua N.; Jenkins, Jon M.; Addison, Brett; Anderson, D. R.; Barclay, Thomas; Beatty, Thomas G.; Berlind, Perry; Bouchy, Francois; Bowen, Michael; Bowler, Brendan P.; Brasseur, C. E.; Briceno, Cesar; Caldwell, Douglas A.; Calkins, Michael L.; Cartwright, Scott; Chaturvedi, Priyanka; Chaverot, Guillaume; Chimaladinne, Sudhish; Christiansen, Jessie L.; Collins, Kevin I.; Crossfield, Ian J. M.; Eastridge, Kevin; Espinoza, Nestor; Esquerdo, Gilbert A.; Feliz, Dax L.; Fenske, Tyler; Fong, William; Gan, Tianjun; Giacalone, Steven; Gill, Holden; Gordon, Lindsey; Granados, A.; Grieves, Nolan; Guenther, Eike W.; Guerrero, Natalia; Henning, Thomas; Henze, Christopher E.; Hesse, Katharine; Hobson, Melissa J.; Horner, Jonathan; James, David J.; Jensen, Eric L. N.; Jimenez, Mary; Jordan, Andres; Kane, Stephen R.; Kielkopf, John; Kim, Kingsley; Kuhn, Rudolf B.; Latouf, Natasha; Law, Nicholas M.; Levine, Alan M.; Lund, Michael B.; Mann, Andrew W.; Mao, Shude; Matson, Rachel A.; Mengel, Matthew W.; Mink, Jessica; Newman, Patrick; O'Dwyer, Tanner; Okumura, Jack; Palle, Enric; Pepper, Joshua; Quintana, Elisa V.; Sarkis, Paula; Savel, Arjun B.; Schlieder, Joshua E.; Schnaible, Chloe; Shporer, Avi; Sefako, Ramotholo; Seidel, Julia V.; Siverd, Robert J.; Skinner, Brett; Stalport, Manu; Stevens, Daniel J.; Stibbards, Caitlin; Tinney, C. G.; West, R. G.; Yahalomi, Daniel A.; Zhang, HuiWe present the discovery and characterization of five hot and warm Jupiters-TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b ( TIC 139375960)-based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full-frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the TESS Follow-up Observing Program Working Group. The planets are all Jovian size (R-P = 1.01-1.77 R-J) and have masses that range from 0.85 to 6.33 M-J. The host stars of these systems have F and G spectral types (5595 <= T-eff <= 6460 K) and are all relatively bright (9.5 < V < 10.8, 8.2 < K < 9.3), making them well suited for future detailed characterization efforts. Three of the systems in our sample (TOI-640 b, TOI-1333 b, and TOI-1601 b) orbit subgiant host stars (log g < 4.1). TOI-640 b is one of only three known hot Jupiters to have a highly inflated radius (R-P > 1.7 R-J, possibly a result of its host star's evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive, hot Jupiter discovered to date by TESS with a measured mass of 6.31(-0.30)(+) (0.28) M-J and a statistically significant, nonzero orbital eccentricity of e = 0.074(-0.022)(+) (0.021). This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest-period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-solar analog. NASA's TESS mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals.