Browsing by Author "Doyle III, Francis J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA meta-learning approach to personalized blood glucose prediction in type 1 diabetes(2023) Langarica, Saul; Rodriguez-Fernandez, Maria; Nunez, Felipe; Doyle III, Francis J.Accurate blood glucose prediction is a critical element in modern artificial pancreas systems. Recently, many deep learning-based models have been proposed for glucose prediction, showing encouraging results in population modeling. However, due to the large amount of data required for training deep learning -based models, few studies have successfully addressed personalized modeling, which is critical to ensure safe policies in a closed-loop scheme given the high inter-patient variability. To address this concern, we propose a meta-learning-based technique for accurate personalized modeling that requires minimal data volume to personalize from its population version, needs few training iterations, and has a low risk of over-fitting. Results using the UVA/Padova simulator show that the proposed technique generalizes better and outperforms other approaches in standard and task-specific metrics, particularly for longer prediction horizons and higher degrees of distributional shifts.
- ItemA Probabilistic Approach to Blood Glucose Prediction in Type 1 Diabetes Under Meal Uncertainties(2023) Langarica, Saul; Rodriguez-Fernandez, Maria; Doyle III, Francis J.; Nunez, FelipeCurrently, most reliable and commercialized artificial pancreas systems for type 1 diabetes are hybrid closed-loop systems, which require the user to announce every meal and its size. However, estimating the amount of carbohydrates in a meal and announcing each and every meal is an error-prone process that introduces important uncertainties to the problem, which when not considered, lead to sub-optimal outcomes of the controller. To address this problem, we propose a novel deep-learning-based model for probabilistic glucose prediction, called the Input and State Recurrent Kalman Network (ISRKN), which consists in the incorporation of an input and state Kalman filter in the latent space of a deep neural network so that the posterior distributions can be computed in closed form and the uncertainty can be propagated using the Kalman equations. In addition, the proposed architecture allows explicit estimation of the meal uncertainty distribution, whose parameters are encoded in the filter parameters. Results using the UVA/Padova simulator and data from a clinical trial show that the proposed model outperforms other probabilistic models using several probabilistic metrics across different degrees of distributional shifts.