• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Dos Santos, Mickael"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Existence and non-existence results for minimizers of the Ginzburg-Landau energy with prescribed degrees
    (WORLD SCIENTIFIC PUBL CO PTE LTD, 2016) Dos Santos, Mickael; Rodiac, Remy
    Let D = Omega\(omega) over bar subset of R-2 be a smooth annular type domain. We consider the simplified Ginzburg-Landau energy E-epsilon (u) = 1/2 integral (D) vertical bar del u vertical bar(2) + 1/4s(2) integral (D) (1 - vertical bar u vertical bar(2))(2) where u : D -> C, and look for minimizers of E-epsilon with prescribed degrees deg (u, partial derivative Omega) = p, deg (u, partial derivative omega) = q on the boundaries of the domain. For large epsilon and for balanced degrees (i.e. p = q), we obtain existence of minimizers for domains with large capacity ( corresponding to thin annulus). We also prove non-existence of minimizers of E-epsilon, for large epsilon, if p not equal q, pq > 0 and if D is a circular annulus with large capacity. Our approach relies on similar results obtained for the Dirichlet energy E-infinity (u) = 1/2 integral (D) vertical bar del u vertical bar(2), on a previous existence result obtained by Berlyand and Golovaty and on a technique developed by Misiats.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback