Browsing by Author "Donoso-Oliva, C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemASTROMER A transformer-based embedding for the representation of light curves(2023) Donoso-Oliva, C.; Becker, I.; Protopapas, P.; Cabrera-Vives, G.; Vishnu, M.; Vardhan, H.Taking inspiration from natural language embeddings, we present ASTROMER, a transformer-based model to create representations of light curves. ASTROMER was pre-trained in a self-supervised manner, requiring no human-labeled data. We used millions of R-band light sequences to adjust the ASTROMER weights. The learned representation can be easily adapted to other surveys by re-training ASTROMER on new sources. The power of ASTROMER consists in using the representation to extract light curve embeddings that can enhance the training of other models, such as classifiers or regressors. As an example, we used ASTROMER embeddings to train two neural-based classifiers that use labeled variable stars from MACHO, OGLE-III, and ATLAS. In all experiments, ASTROMER-based classifiers outperformed a baseline recurrent neural network trained on light curves directly when limited labeled data were available. Furthermore, using ASTROMER embeddings decreases the computational resources needed while achieving state-of-the-art results. Finally, we provide a Python library that includes all the functionalities employed in this work.
- ItemSearching for Changing-state AGNs in Massive Data Sets. I. Applying Deep Learning and Anomaly-detection Techniques to Find AGNs with Anomalous Variability Behaviors(2021) Sanchez-Saez, P.; Lira, H.; Marti, L.; Sanchez-Pi, N.; Arredondo, J.; Bauer, F. E.; Bayo, A.; Cabrera-Vives, G.; Donoso-Oliva, C.; Estevez, P. A.; Eyheramendy, S.; Forster, F.; Hernandez-Garcia, L.; Arancibia, A. M. Munoz; Perez-Carrasco, M.; Sepulveda, M.; Vergara, J. R.The classic classification scheme for active galactic nuclei (AGNs) was recently challenged by the discovery of the so-called changing-state (changing-look) AGNs. The physical mechanism behind this phenomenon is still a matter of open debate and the samples are too small and of serendipitous nature to provide robust answers. In order to tackle this problem, we need to design methods that are able to detect AGNs right in the act of changing state. Here we present an anomaly-detection technique designed to identify AGN light curves with anomalous behaviors in massive data sets. The main aim of this technique is to identify CSAGN at different stages of the transition, but it can also be used for more general purposes, such as cleaning massive data sets for AGN variability analyses. We used light curves from the Zwicky Transient Facility data release 5 (ZTF DR5), containing a sample of 230,451 AGNs of different classes. The ZTF DR5 light curves were modeled with a Variational Recurrent Autoencoder (VRAE) architecture, that allowed us to obtain a set of attributes from the VRAE latent space that describes the general behavior of our sample. These attributes were then used as features for an Isolation Forest (IF) algorithm that is an anomaly detector for a "one class" kind of problem. We used the VRAE reconstruction errors and the IF anomaly score to select a sample of 8809 anomalies. These anomalies are dominated by bogus candidates, but we were able to identify 75 promising CSAGN candidates.