• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Dominguez-Tenreiro, R."

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Impact of primordial black hole dark matter on gas properties at very high redshift: Semianalytical model
    (2024) Casanueva-Villarreal, C.; Tissera, P. B.; Padilla, N.; Liu, B.; Bromm, V.; Pedrosa, S.; Bignone, L.; Dominguez-Tenreiro, R.
    Context. Primordial black holes (PBHs) have been proposed as potential candidates for dark matter (DM) and have garnered significant attention in recent years. Aims. Our objective is to delve into the distinct impact of PBHs on the gas properties and their potential role in shaping the cosmic structure. Specifically, we aim to analyze the evolving gas properties while considering the presence of accreting PBHs with varying monochromatic masses and in different quantities. By studying the feedback effects produced by this accretion, our final goal is to assess the plausibility of PBHs as candidates for DM. Methods. We developed a semianalytical model that works on top of the CIELO hydrodynamical simulation around z similar to 23. This model enables a comprehensive analysis of the evolution of gas properties affected by PBHs. Our focus lies on the temperature and hydrogen abundances, with specific emphasis on the region closest to the halo center. We explore PBH masses of 1, 33, and 100 M-circle dot, located within mass windows in which a substantial fraction of DM could exist in the form of PBHs. We investigated various DM fractions composed of these PBHs (f(PBH )> 10(-4)). Results. Our findings suggest that PBHs with masses of 1 M-circle dot and fractions greater than or equal to approximately 10(-2) would be ruled out due to the significant changes induced in the gas properties. The same applies to PBHs with a mass of 33 M-circle dot and 100 M-circle dot and fractions greater than approximately 10(-3). These effects are particularly pronounced in the region nearest to the halo center, potentially leading to delayed galaxy formation within halos.
  • No Thumbnail Available
    Item
    Redshift evolution of the dark matter haloes shapes
    (2023) Cataldi, P.; Pedrosa, S. E.; Tissera, P. B.; Artale, M. C.; Padilla, N. D.; Dominguez-Tenreiro, R.; Bignone, L.; Gonzalez, R.; Pellizza, L. J.
    In this work, we aim at investigating the morphology evolution of Milky Way mass-like dark matter haloes selected from the cielo and IllustrisTNG projects. The connection between halo shapes and their environment has been studied in previous works at z = 0 but their connection remains yet to be fully understood. We focus on the evolution across cosmic time of the halo shapes and the relation with the infalling material, using hydrodynamical simulations. Our findings show that haloes tend to be more triaxial at earlier times as a consequence of stronger accretion in the direction of the filaments. As the haloes evolve towards a dominant isotropic accretion mode and relaxation, their shape at 20 per cent of the virial radius becomes more spherical. In agreement with previous results, baryons have an important effect within the inner regions of the haloes, driving them from triaxial to rounder shapes. We also find a correlation between the strength of the quadrupole infalling mode and the degree of ellipticity of the haloes: as the filament strength decreases steadily with redshift, the haloes became more spherical and less elliptical.
  • No Thumbnail Available
    Item
    Satellite galaxies in groups in the CIELO Project I. Gas removal from galaxies and its re-distribution in the intragroup medium
    (2022) Rodriguez, S.; Garcia Lambas, D.; Padilla, N. D.; Tissera, P.; Bignone, L.; Dominguez-Tenreiro, R.; Gonzalez, R.; Pedrosa, S.
    We study the impact of the environment on galaxies as they fall in and orbit in the potential well of a Local Group (LG) analogue, following them with high cadence. The analysis is performed on eight disc satellite galaxies from the CIELO suite of hydrodynamical simulations. All galaxies have stellar masses within the range [10(8.1)-10(9.56)] M(circle dot)h(-1). We measure tidal torques, ram pressure, and specific star formation rates (sSFRs) as a function of time, and correlate them with the amount of gas lost by satellites along their orbits. Stronger removal episodes occur when the disc plane is oriented perpendicular to the direction of motion. More than one peripassage is required to significantly modify the orientations of the discs with respect to the orbital plane. The gas removed during the interaction with the central galaxies may also be found opposite to the direction of motion, depending on the orbital configuration. Satellites are not totally quenched when the galaxies reach their first peripassage and continue forming about 10 per cent of the final stellar mass after this event. The fraction of removed gas is found to be the product of the joint action of tidal torque and ram pressure, which can also trigger new star formation activity and subsequent supernova feedback.
  • No Thumbnail Available
    Item
    The role of AGN feedback in the structure, kinematics, and evolution of ETGs in Horizon simulations
    (2021) Rosito, M. S.; Pedrosa, S. E.; Tissera, P. B.; Chisari, N. E.; Dominguez-Tenreiro, R.; Dubois, Y.; Peirani, S.; Devriendt, J.; Pichon, C.; Slyz, A.
    Context. Feedback processes play a fundamental role in the regulation of the star formation (SF) activity in galaxies and, in particular, in the quenching of early-type galaxies (ETGs) as has been inferred by observational and numerical studies of Lambda -CDM models. At z=0, ETGs exhibit well-known fundamental scaling relations, but the connection between scaling relations and the physical processes shaping ETG evolution remains unknown.Aims. This work aims to study the impact of the energetic feedback due to active galactic nuclei (AGN) on the formation and evolution of ETGs. We focus on assessing the impact of AGN feedback on the evolution of the mass-plane and the fundamental plane (FP; defined using mass surface density) as well as on morphology, kinematics, and stellar age across the FP.Methods. The Horizon-AGN and Horizon-noAGN cosmological hydrodynamical simulations were performed with identical initial conditions, including the same physical processes except for the activation of the AGN feedback in the former. We selected a sample of central ETGs from both simulations using the same criteria and exhaustively studied their SF activity, kinematics, and scaling relations for z <= 3.Results. We find that Horizon-AGN ETGs identified at z=0 follow the observed fundamental scaling relations (mass-plane, FP, and mass-size relation) and qualitatively reproduce kinematic features albeit conserving a rotational inner component with a mass fraction regulated by the AGN feedback. We discover that AGN feedback seems to be required to reproduce the bimodality in the spin parameter distribution reported by observational works and the mass-size relation; more massive galaxies have older stellar populations, larger sizes, and are slower rotators. We study the evolution of the fundamental relations with redshift, finding a mild evolution of the mass-plane of Horizon-AGN ETGs for z< 1, whereas a stronger change is detected for z> 1. The ETGs in Horizon-noAGN show a strong systematic redshift evolution of the mass-plane. The FP of Horizon-AGN ETGs agrees with observations at z=0. When AGN feedback is switched off, a fraction of galaxies depart from the expected FP at all analysed redshifts owing to the presence of a few extended galaxies with an excess of stellar surface density. We find that AGN feedback regulates the SF activity as a function of stellar mass and redshift being able to reproduce the observed relations. Our results show the impact of AGN feedback on the mass-to-light ratio (M/L) and its relation with the tilt of the luminosity FP (L-FP; defined using the averaged surface brightness). Overall, AGN feedback has an impact on the regulation of the SF activity, size, stellar surface density, stellar ages, rotation, and masses of ETGs that is reflected on the fundamental relations, particularly on the FP. We detect a dependence of the FP on stellar age and galaxy morphology that evolves with redshfit. The characteristics of the galaxy distribution on the FP according to these properties change drastically by z similar to 1 in Horizon-AGN and hence this feature could provide further insight into the action of AGN feedback.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize