Browsing by Author "Dietrich, J. P."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemA DESGW Search for the Electromagnetic Counterpart to the LIGO/Virgo Gravitational-wave Binary Neutron Star Merger Candidate S190510g(2020) Garcia, A.; Morgan, R.; Herner, K.; Palmese, A.; Soares Santos, M.; Annis, J.; Brout, D.; Vivas, A. K.; Drlica Wagner, A.; Quirola Vásquez, Jonathan Alexander; Santana Silva, L.; Tucker, D. L.; Allam, S.; Wiesner, M.; Garcia Bellido, J.; Gill, M. S. S.; Sako, M.; Kessler, R.; Davis, T. M.; Scolnic, D.; Casares, J.; Chen, H.; Conselice, C.; Cooke, J.; Doctor, Z.; Foley, R. J.; Horvath, J.; Howell, D. A.; Kilpatrick, C. D.; Lidman, C.; Olivares, E. F.; Paz Chinchon, F.; Pineda G., J.; Rest, A.; Sherman, N.; Abbott, T. M. C.; Aguena, M.; Avila, S.; Bertin, E.; Bhargava, S.; Brooks, D.; Burke, D. L.; Rosell, A. C.; Kind, M. C.; Carretero, J.; Costanzi, M.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.
- ItemCluster Cosmology Constraints from the 2500 deg2 SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope(2019) Bocquet, S.; Dietrich, J. P.; Schrabback, T.; Bleem, L. E.; Klein, M.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Brodwin, M.; Bulbul, E.; Canning, R. E. A.; Capasso, R.; Carlstrom, J. E.; Chang, C. L.; Chiu, I; Cho, H-M; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dobbs, M. A.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Grandis, S.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Khullar, G.; Knox, L.; Kraft, R.; Lee, A. T.; von der Linden, A.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Morris, R. G.; Padin, S.; Patil, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Strazzullo, V; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.We derive cosmological constraints using a galaxy cluster sample selected from the 2500 deg(2) SPT-SZ survey. The sample spans the redshift range 0.25 < z < 1.75 and contains 343 clusters with SZ detection significance xi > 5. The sample is supplemented with optical weak gravitational lensing measurements of 32 clusters with 0.29 < z < 1.13 (from Magellan and Hubble Space Telescope) and X-ray measurements of 89 clusters with 0.25 < z < 1.75 (from Chandra). We rely on minimal modeling assumptions: (i) weak lensing provides an accurate means of measuring halo masses, (ii) the mean SZ and X-ray observables are related to the true halo mass through power-law relations in mass and dimensionless Hubble parameter E(z) with a priori unknown parameters, and (iii) there is (correlated, lognormal) intrinsic scatter and measurement noise relating these observables to their mean relations. We simultaneously fit for these astrophysical modeling parameters and for cosmology. Assuming a flat nu Lambda CDM model, in which the sum of neutrino masses is a free parameter, we measure Omega(m) = 0.276 +/- 0.047, sigma(8) = 0.781 +/- 0.037, and sigma(8)(Omega(m)/0.3)(0.2) = 0.766 +/- 0.025. The redshift evolutions of the X-ray Y-X-mass and M-gas-mass relations are both consistent with self-similar evolution to within 1 sigma. The mass slope of the Y-X-mass relation shows a 2.3 sigma deviation from self-similarity. Similarly, the mass slope of the M-gas-mass relation is steeper than self-similarity at the 2.5 sigma level. In a nu omega CDM cosmology, we measure the dark energy equation-of-state parameter w = -1.55 +/- 0.41 from the cluster data. We perform a measurement of the growth of structure since redshift z similar to 1.7 and find no evidence for tension with the prediction from general relativity. This is the first analysis of the SPT cluster sample that uses direct weak-lensing mass calibration and is a step toward using the much larger weak-lensing data set from DES. We provide updated redshift and mass estimates for the SPT sample.
- ItemDistant galaxy clusters in a deep XMM-Newton field within the CFTHLS D4(2013) de Hoon, A.; Lamer, G.; Schwope, A.; Muehlegger, M.; Fassbender, R.; Boehringer, H.; Lerchster, M.; Nastasi, A.; Suhada, R.; Verdugo, M.; Dietrich, J. P.; Brimioulle, F.; Rosati, P.; Pierini, D.; Santos, J. S.; Quintana, H.; Rabitz, A.; Takey, A.Aims. The XMM-Newton distant cluster project (XDCP) aims at the identification of a well defined sample of X-ray selected clusters of galaxies at redshifts z >= 0.8. As part of this project, we analyse the deep XMM-Newton exposure covering one of the CFHTLS deep fields to quantify the cluster content. We validate the optical follow-up strategy as well as the X-ray selection function.
- ItemKinematic Sunyaev-Zel'dovich effect with ACT, DES, and BOSS: A novel hybrid estimator(2023) Mallaby-Kay, M.; Amodeo, S.; Hill, J. C.; Aguena, M.; Allam, S.; Alves, O.; Annis, J.; Battaglia, N.; Battistelli, E. S.; Baxter, E. J.; Bechtol, K.; Becker, M. R.; Bertin, E.; Bond, J. R.; Brooks, D.; Calabrese, E.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Choi, A.; Crocce, M.; da Costa, L. N.; Pereira, M. E. S.; De Vicente, J.; Desai, S.; Dietrich, J. P.; Doel, P.; Doux, C.; Drlica-Wagner, A.; Dunkley, J.; Elvin-Poole, J.; Everett, S.; Ferraro, S.; Ferrero, I.; Frieman, J.; Gallardo, P. A.; Garcia-Bellido, J.; Giannini, G.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Hinton, S. R.; Hollowood, D. L.; James, D. J.; Kosowsky, A.; Kuehn, K.; Lokken, M.; Louis, T.; Marshall, J. L.; McMahon, J.; Mena-Fernandez, J.; Menanteau, F.; Miquel, R.; Moodley, K.; Mroczkowski, T.; Naess, S.; Niemack, M. D.; Ogando, R. L. C.; Page, L.; Pandey, S.; Pieres, A.; Malagon, A. A. Plazas; Raveri, M.; Rodriguez-Monroy, M.; Rykoff, E. S.; Samuroff, S.; Sanchez, E.; Schaan, E.; Sevilla-Noarbe, I.; Sheldon, E.; Sifon, C.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; To, C.; Vargas, C.; Vavagiakis, E. M.; Weaverdyck, N.; Weller, J.; Wiseman, P.; Yanny, B.The kinematic and thermal Sunyaev-Zel'dovich (kSZ and tSZ) effects probe the abundance and thermodynamics of ionized gas in galaxies and clusters. We present a new hybrid estimator to measure the kSZ effect by combining cosmic microwave background temperature anisotropy maps with photometric and spectroscopic optical survey data. The method interpolates a velocity reconstruction from a spectroscopic catalog at the positions of objects in a photometric catalog, which makes it possible to leverage the high number density of the photometric catalog and the precision of the spectroscopic survey. Combining this hybrid kSZ estimator with a measurement of the tSZ effect simultaneously constrains the density and temperature of free electrons in the photometrically selected galaxies. Using the 1000 deg2 of overlap between the Atacama Cosmology Telescope (ACT) Data Release 5, the first three years of data from the Dark Energy Survey (DES), and the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12, we detect the kSZ signal at 4.8 & sigma; and reject the null (no-kSZ) hypothesis at 5.1 & sigma;. This corresponds to 2.0 & sigma; per 100,000 photometric objects with a velocity field based on a spectroscopic survey with 1=5th the density of the photometric catalog. For comparison, a recent ACT analysis using exclusively spectroscopic data from BOSS measured the kSZ signal at 2.1 & sigma; per 100,000 objects. Our derived constraints on the thermodynamic properties of the galaxy halos are consistent with previous measure-ments. With future surveys, such as the Dark Energy Spectroscopic Instrument and the Rubin Observatory Legacy Survey of Space and Time, we expect that this hybrid estimator could result in measurements with significantly better signal-to-noise than those that rely on spectroscopic data alone.
- ItemSOAR/Goodman Spectroscopic Assessment of Candidate Counterparts of the LIGO/Virgo Event GW190814*(2022) Tucker, D. L.; Wiesner, M. P.; Allam, S. S.; Soares-Santos, M.; Bom, C. R.; Butner, M.; Garcia, A.; Morgan, R.; Olivares E, F.; Palmese, A.; Santana-Silva, L.; Shrivastava, A.; Annis, J.; Garcia-Bellido, J.; Gill, M. S. S.; Herner, K.; Kilpatrick, C. D.; Makler, M.; Sherman, N.; Amara, A.; Lin, H.; Smith, M.; Swann, E.; Arcavi, I; Bachmann, T. G.; Bechtol, K.; Berlfein, F.; Briceno, C.; Brout, D.; Butler, R. E.; Cartier, R.; Casares, J.; Chen, H-Y; Conselice, C.; Contreras, C.; Cook, E.; Cooke, J.; Dage, K.; D'Andrea, C.; Davis, T. M.; de Carvalho, R.; Diehl, H. T.; Dietrich, J. P.; Doctor, Z.; Drlica-Wagner, A.; Drout, M.; Farr, B.; Finley, D. A.; Fishbach, M.; Foley, R. J.; Forster-Buron, F.; Fosalba, P.; Friedel, D.; Frieman, J.; Frohmaier, C.; Gruendl, R. A.; Hartley, W. G.; Hiramatsu, D.; Holz, D. E.; Howell, D. A.; Kawash, A.; Kessler, R.; Kuropatkin, N.; Lahav, O.; Lundgren, A.; Lundquist, M.; Malik, U.; Mann, A. W.; Marriner, J.; Marshall, J. L.; Martinez-Vazquez, C. E.; McCully, C.; Menanteau, F.; Meza, N.; Narayan, G.; Neilsen, E.; Nicolaou, C.; Nichol, R.; Paz-Chinchon, F.; Pereira, M. E. S.; Pineda, J.; Points, S.; Quirola-Vasquez, J.; Rembold, S.; Rest, A.; Rodriguez, O.; Romer, A. K.; Sako, M.; Salim, S.; Scolnic, D.; Smith, J. A.; Strader, J.; Sullivan, M.; Swanson, M. E. C.; Thomas, D.; Valenti, S.; Varga, T. N.; Walker, A. R.; Weller, J.; Wood, M. L.; Yanny, B.; Zenteno, A.; Aguena, M.; Andrade-Oliveira, F.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Costanzi, M.; da Costa, L. N.; De Vicente, J.; Desai, S.; Everett, S.; Ferrero, I; Flaugher, B.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gschwend, J.; Gutierrez, G.; Hinton, S. R.; Hollowood, D. L.; Honscheid, K.; James, D. J.; Kuehn, K.; Lima, M.; Maia, M. A. G.; Miquel, R.; Ogando, R. L. C.; Pieres, A.; Malagon, A. A. Plazas; Rodriguez-Monroy, M.; Sanchez, E.; Scarpine, V; Schubnell, M.; Serrano, S.; Sevilla-Noarbe, I; Suchyta, E.; Tarle, G.; To, C.; Zhang, Y.On 2019 August 14 at 21:10:39 UTC, the LIGO/Virgo Collaboration (LVC) detected a possible neutron star-black hole merger (NSBH), the first ever identified. An extensive search for an optical counterpart of this event, designated GW190814, was undertaken using the Dark Energy Camera on the 4 m Victor M. Blanco Telescope at the Cerro Tololo Inter-American Observatory. Target of Opportunity interrupts were issued on eight separate nights to observe 11 candidates using the 4.1 m Southern Astrophysical Research (SOAR) telescope's Goodman High Throughput Spectrograph in order to assess whether any of these transients was likely to be an optical counterpart of the possible NSBH merger. Here, we describe the process of observing with SOAR, the analysis of our spectra, our spectroscopic typing methodology, and our resultant conclusion that none of the candidates corresponded to the gravitational wave merger event but were all instead other transients. Finally, we describe the lessons learned from this effort. Application of these lessons will be critical for a successful community spectroscopic follow-up program for LVC observing run 4 (O4) and beyond.
- ItemThe Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev-Zel'dovich Galaxy Clusters(2021) Hilton, M.; Sifon, C.; Naess, S.; Madhavacheril, M.; Oguri, M.; Rozo, E.; Rykoff, E.; Abbott, T. M. C.; Adhikari, S.; Aguena, M.; Aiola, S.; Allam, S.; Amodeo, S.; Amon, A.; Annis, J.; Ansarinejad, B.; Aros-Bunster, C.; Austermann, J. E.; Avila, S.; Bacon, D.; Battaglia, N.; Beall, J. A.; Becker, D. T.; Bernstein, G. M.; Bertin, E.; Bhandarkar, T.; Bhargava, S.; Bond, J. R.; Brooks, D.; Burke, D. L.; Calabrese, E.; Carrasco Kind, M.; Carretero, J.; Choi, S. K.; Choi, A.; Conselice, C.; Costa, L. N. da; Costanzi, M.; Crichton, D.; Crowley, K. T.; Dunner, R.; Denison, E. V.; Devlin, M. J.; Dicker, S. R.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Duff, S. M.; Duivenvoorden, A. J.; Dunkley, J.; Everett, S.; Ferraro, S.; Ferrero, I.; Ferte, A.; Flaugher, B.; Frieman, J.; Gallardo, P. A.; Garcia-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giles, P.; Golec, J. E.; Gralla, M. B.; Grandis, S.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Han, D.; Hartley, W. G.; Hasselfield, M.; Hill, J. C.; Hilton, G. C.; Hincks, A. D.; Hinton, S. R.; Ho, S-P. P.; Honscheid, K.; Hoyle, B.; Hubmayr, J.; Huffenberger, K. M.; Hughes, J. P.; Jaelani, A. T.; Jain, B.; James, D. J.; Jeltema, T.; Kent, S.; Knowles, K.; Koopman, B. J.; Kuehn, K.; Lahav, O.; Lima, M.; Lin, Y-T.; Lokken, M.; Loubser, S. I.; MacCrann, N.; Maia, M. A. G.; Marriage, T. A.; Martin, J.; McMahon, J.; Melchior, P.; Menanteau, F.; Miquel, R.; Miyatake, H.; Moodley, K.; Morgan, R.; Mroczkowski, T.; Nati, F.; Newburgh, L. B.; Niemack, M. D.; Nishizawa, A. J.; Ogando, R. L. C.; Orlowski-Scherer, J.; Page, L. A.; Palmese, A.; Partridge, B.; Paz-Chinchon, F.; Phakathi, P.; Plazas, A. A.; Robertson, N. C.; Romer, A. K.; Rosell, A. Carnero; Salatino, M.; Sanchez, E.; Schaan, E.; Schillaci, A.; Sehgal, N.; Serrano, S.; Shin, T.; Simon, S. M.; Smith, M.; Soares-Santos, M.; Spergel, D. N.; Staggs, S. T.; Storer, E. R.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; To, C.; Trac, H.; Ullom, J. N.; Vale, L. R.; Lanen, J. Van; Vavagiakis, E. M.; Vicente, J. De; Wilkinson, R. D.; Wollack, E. J.; Xu, Z.; Zhang, Y.We present a catalog of 4195 optically confirmed Sunyaev-Zel'dovich (SZ) selected galaxy clusters detected with signal-to-noise ratio >4 in 13,211 deg(2) of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multifrequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008 to 2018 and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 < z < 1.91 (median z = 0.52). The catalog contains 222 z > 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ signal versus mass-scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M-500c > 3.8 x 10(14) M, evaluated at z = 0.5, for clusters detected at signal-to-noise ratio >5 in maps filtered at an angular scale of 24. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ signal mass-scaling relation, such as the Dark Energy Survey (4566 deg(2)), the Hyper Suprime-Cam Subaru Strategic Program (469 deg(2)), and the Kilo Degree Survey (825 deg(2)). We highlight some noteworthy objects in the sample, including potentially projected systems, clusters with strong lensing features, clusters with active central galaxies or star formation, and systems of multiple clusters that may be physically associated. The cluster catalog will be a useful resource for future cosmological analyses and studying the evolution of the intracluster medium and galaxies in massive clusters over the past 10 Gyr.