Browsing by Author "Diaz, Hugo S."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCardiovascular and autonomic dysfunction in long-COVID syndrome and the potential role of non-invasive therapeutic strategies on cardiovascular outcomes(2023) Allendes, Francisca J.; Diaz, Hugo S.; Ortiz, Fernando C.; Marcus, Noah J.; Quintanilla, Rodrigo; Inestrosa, Nibaldo C.; Del Rio, RodrigoA significant percentage of COVID-19 survivors develop long-lasting cardiovascular sequelae linked to autonomic nervous system dysfunction, including fatigue, arrhythmias, and hypertension. This post-COVID-19 cardiovascular syndrome is one facet of "long-COVID," generally defined as long-term health problems persisting/appearing after the typical recovery period of COVID-19. Despite the fact that this syndrome is not fully understood, it is urgent to develop strategies for diagnosing/managing long-COVID due to the immense potential for future disease burden. New diagnostic/therapeutic tools should provide health personnel with the ability to manage the consequences of long-COVID and preserve/improve patient quality of life. It has been shown that cardiovascular rehabilitation programs (CRPs) stimulate the parasympathetic nervous system, improve cardiorespiratory fitness (CRF), and reduce cardiovascular risk factors, hospitalization rates, and cognitive impairment in patients suffering from cardiovascular diseases. Given their efficacy in improving patient outcomes, CRPs may have salutary potential for the treatment of cardiovascular sequelae of long-COVID. Indeed, there are several public and private initiatives testing the potential of CRPs in treating fatigue and dysautonomia in long-COVID subjects. The application of these established rehabilitation techniques to COVID-19 cardiovascular syndrome represents a promising approach to improving functional capacity and quality of life. In this brief review, we will focus on the long-lasting cardiovascular and autonomic sequelae occurring after COVID-19 infection, as well as exploring the potential of classic and novel CRPs for managing COVID-19 cardiovascular syndrome. Finally, we expect this review will encourage health care professionals and private/public health organizations to evaluate/implement non-invasive techniques for the management of COVID-19 cardiovascular sequalae.
- ItemExercise intolerance in volume overload heart failure is associated with low carotid body mediated chemoreflex drive(2021) Andrade, David C.; Diaz-Jara, Esteban; Toledo, Camilo; Schwarz, Karla G.; Pereyra, Katherin V.; Diaz, Hugo S.; Marcus, Noah J.; Ortiz, Fernando C.; Rios-Gallardo, Angelica P.; Ortolani, Domiziana; Del Rio, RodrigoMounting an appropriate ventilatory response to exercise is crucial to meeting metabolic demands, and abnormal ventilatory responses may contribute to exercise-intolerance (EX-inT) in heart failure (HF) patients. We sought to determine if abnormal ventilatory chemoreflex control contributes to EX-inT in volume-overload HF rats. Cardiac function, hypercapnic (HCVR) and hypoxic (HVR) ventilatory responses, and exercise tolerance were assessed at the end of a 6 week exercise training program. At the conclusion of the training program, exercise tolerant HF rats (HF+EX-T) exhibited improvements in cardiac systolic function and reductions in HCVR, sympathetic tone, and arrhythmias. In contrast, HF rats that were exercise intolerant (HF+EX-inT) exhibited worse diastolic dysfunction, and showed no improvements in cardiac systolic function, HCVR, sympathetic tone, or arrhythmias at the conclusion of the training program. In addition, HF+EX-inT rats had impaired HVR which was associated with increased arrhythmia susceptibility and mortality during hypoxic challenges (similar to 60% survival). Finally, we observed that exercise tolerance in HF rats was related to carotid body (CB) function as CB ablation resulted in impaired exercise capacity in HF+EX-T rats. Our results indicate that: (i) exercise may have detrimental effects on cardiac function in HF-EX-inT, and (ii) loss of CB chemoreflex sensitivity contributes to EX-inT in HF.