• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Diaz, Francisca P."

Now showing 1 - 10 of 10
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    ANOTHER TALE FROM THE HARSH WORLD: HOW PLANTS ADAPT TO EXTREME ENVIRONMENTS
    (2021) Dussarrat, Thomas; Decros, Guillaume; Diaz, Francisca P.; Gibon, Yves; Latorre, Claudio; Rolin, Dominique; Gutierrez, Rodrigo A.; Petriacq, Pierre
    The environmental fluctuations of a constantly evolving world can mould a changing context, often unfavourable to sessile organisms that must adjust their resource allocation between both resistance or tolerance mechanisms and growth. Plants bear the fascinating ability to survive and thrive under extreme conditions, a capacity that has always attracted the curiosity of humans, who have discovered and improved species capable of meeting our physiological needs. In this context, plant research has produced a great wealth of knowledge on the responses of plants to a range of abiotic stresses, mostly considering model species and/or controlled conditions. However, there is still minimal comprehension of plant adaptations and acclimations to extreme environments, which cries out for future investigations. In this article, we examined the main advances in understanding the adapted traits fixed through evolution that allowed for plant resistance against abiotic stress in extreme natural ecosystems. Spatio-temporal adaptations from extremophile plant species are described from morpho-anatomical features to physiological function and metabolic pathways adjustments. Considering that metabolism is at the heart of plant adaptations, a focus is given to the study of primary and secondary metabolic adjustments as well as redox metabolism under extreme conditions. This article further casts a critical glance at the main successes in studying extreme environments and examines some of the challenges and opportunities this research offers, especially considering the possible interaction with ecology and metaphenomics.
  • No Thumbnail Available
    Item
    Ecological and metabolic implications of the nurse effect of Maihueniopsis camachoi in the Atacama Desert
    (2024) Diaz, Francisca P.; Dussarrat, Thomas; Carrasco-Puga, Gabriela; Colombie, Sophie; Prigent, Sylvain; Decros, Guillaume; Bernillon, Stephane; Cassan, Cedric; Flandin, Amelie; Guerrero, Pablo C.; Gibon, Yves; Rolin, Dominique; Cavieres, Lohengrin A.; Petriacq, Pierre; Latorre, Claudio; Gutierrez, Rodrigo A.
    Plant-plant positive interactions are key drivers of community structure. Yet, the underlying molecular mechanisms of facilitation processes remain unexplored. We investigated the 'nursing' effect of Maihueniopsis camachoi, a cactus that thrives in the Atacama Desert between c. 2800 and 3800 m above sea level. We hypothesised that an important protective factor is thermal amelioration of less cold-tolerant species with a corresponding impact on molecular phenotypes.To test this hypothesis, we compared plant cover and temperatures within the cactus foliage with open areas and modelled the effect of temperatures on plant distribution. We combined eco-metabolomics and machine learning to test the molecular consequences of this association.Multiple species benefited from the interaction with M. camachoi. A conspicuous example was the extended distribution of Atriplex imbricata to colder elevations in association with M. camachoi (400 m higher as compared to plants in open areas). Metabolomics identified 93 biochemical markers predicting the interaction status of A. imbricata with 79% accuracy, independently of year.These findings place M. camachoi as a key species in Atacama plant communities, driving local biodiversity with an impact on molecular phenotypes of nursed species. Our results support the stress-gradient hypothesis and provide pioneer insights into the metabolic consequences of facilitation.
  • No Thumbnail Available
    Item
    Hydroclimate variations over the last 17,000 years as estimated by leaf waxes in rodent middens from the south-central Atacama Desert, Chile
    (2023) Frugone-Alvarez, Matias; Contreras, Sergio; Meseguer-Ruiz, Oliver; Tejos, Eduardo; Delgado-Huertas, Antonio; Valero-Garces, Blas; Diaz, Francisca P.; Briceno, Matias; Bustos-Morales, Manuel; Latorre, Claudio
    Leaf cuticular waxes are one of the most important environment-plant interaction structural systems that enable desert plants to withstand extreme climatic conditions. We present a long chain n-alkyl lipids study in fresh plant leaves and rodent palaeomiddens collected along an elevational gradient in the south-central Atacama Desert of Chile, covering six different vegetation belts: Steppe (4500-4000 m asl), Puna (4000-3300 m asl), pre-Puna (3300-2400 m asl), Absolute Desert (2400-1000 m asl) and Coastal Desert (1000-0 m asl). The 28 rodent palaeomiddens analyzed from Quebrada Incahuasi (25.6 & DEG;S, 3600 m asl) span the last 17,000 years. Modern-day distribution of long-chain n-alkanes and n-alkanoic acids varies among the dominant plant associations of the Atacama Desert. These plants show a species -specific chemotaxonomy linked to the climatic conditions. Furthermore, differences in average chain length (ACL) and carbon preference index (CPI) suggest that these plant communities are highly adapted to extreme environmental conditions. The sum of leaf wax n-alkanes was highest under wet conditions, while n-alkanoic acids (between n -C24 and n -C28) increased with hyperaridity. Similarly, analysis of n- alkane time series from palaeomiddens showed that the greatest changes in leaf wax n-alkane distri-butions (ACL and CPI) corresponded to the greatest increases in moisture during the Central Andean Pluvial Event (CAPE; between 18 and 9 ka cal BP) and the Late Holocene. The shift in the palaeomidden n- alkane distributions is corroborated by the relative abundance of rainfall-dependent extra-local taxa. This is the first study to report leaf wax content obtained from ancient rodent middens, and shows promising results as a robust hydroclimate proxy for the Atacama Desert region. & COPY; 2023 Published by Elsevier Ltd.
  • No Thumbnail Available
    Item
    Nakazawaea atacamensis f.a., sp. nov. a novel nonconventional fermentative ascomycetous yeast species from the Atacama Desert
    (2024) Araya, Macarena; Villarreal, Pablo; Moyano, Tomas; Santos, Ana R. O.; Diaz, Francisca P.; Bustos-Jarufe, Andrea; Urbina, Kamila; del Pino, Javier E.; Groenewald, Marizeth; Gutierrez, Rodrigo A.; Rosa, Carlos A.; Cubillos, Francisco A.
    In this study, we describe Nakazawaea atacamensis f. a., sp. nov., a novel species obtained from Neltuma chilensis plant samples in Chile's hyperarid Atacama Desert. In total, three strains of N. atacamensis were obtained from independent N. chilensis samples (synonym Prosopis chilensis, Algarrobo). Two strains were obtained from bark samples, while the third strain was obtained from bark-exuded gum from another tree. The novel species was defined using molecular characteristics and subsequently characterized with respect to morphological, physiological, and biochemical properties. A neighbor-joining analysis using the sequences of the D1/D2 domains of the large subunit ribosomal RNA gene revealed that N. atacamensis clustered with Nakazawaea pomicola. The sequence of N. atacamensis differed from closely related species by 1.3%-5.2% in the D1/D2 domains. A phylogenomic analysis based on single-nucleotide polymorphism's data confirms that the novel species belongs to the genus Nakazawaea, where N. atacamensis clustered with N. peltata. Phenotypic comparisons demonstrated that N. atacamensis exhibited distinct carbon assimilation patterns compared to its related species. Genome sequencing of the strain ATA-11A-BT revealed a genome size of approximately 12.4 Mbp, similar to other Nakazawaea species, with 5116 protein-coding genes annotated using InterProScan. In addition, N. atacamensis exhibited the capacity to ferment synthetic wine must, representing a potential new yeast for mono or co-culture wine fermentations. This comprehensive study expands our understanding of the genus Nakazawaea and highlights the ecological and industrial potential of N. atacamensis in fermentation processes. The holotype of N. atacamensis sp. nov. is CBS 18375T. The Mycobank number is MB 849680.
  • No Thumbnail Available
    Item
    New uses for ancient middens: bridging ecological and evolutionary perspectives
    (2024) Becklin, Katie M.; Betancourt, Julio L.; Braasch, Joseph; Dezerald, Olivier; Diaz, Francisca P.; Gonzalez, Angelica L.; Harbert, Robert; Holmgren, Camille A.; Hornsby, Angela D.; Latorre, Claudio; Matocq, Marjorie D.; Smith, Felisa A.
    Rodent middens provide a fine-scale spatiotemporal record of plant and animal communities over the late Quaternary. In the Americas, middens have offered insight into biotic responses to past environmental changes and historical factors influencing the distribution and diversity of species. However, few studies have used middens to investigate genetic or ecosystem level responses. Integrating midden studies with neoecology and experimental evolution can help address these gaps and test mechanisms underlying eco-evolutionary patterns across biological and spatiotemporal scales. Fully realizing the potential of middens to answer cross -cutting ecological and evolutionary questions and inform conservation goals in the Anthropocene will require a collaborative research community to exploit existing midden archives and mount new campaigns to leverage midden records globally.
  • Loading...
    Thumbnail Image
    Item
    Phylogenetically diverse wild plant species use common biochemical strategies to thrive in the Atacama Desert
    (2024) Dussarrat, Thomas; Nilo-Poyanco, Ricardo; Moyano Yugovic, Tomas Custodio; Prigent, Sylvain; Jeffers, Tim L.; Diaz, Francisca P.; Decros, Guillaume; Audi, Lauren; Sondervan, Veronica M.; Shen, Bingran; Araus, Viviana; Rolin, Dominique; Shasha, Dennis; Coruzzi, Gloria M.; Gibon, Yves; Latorre H., Claudio; Petriacq, Pierre; Gutierrez Alliende, Rodrigo Hernán
    The best ideotypes are under mounting pressure due to increased aridity. Understanding the conserved molecular mechanisms that evolve in wild plants adapted to harsh environments is crucial in developing new strategies for agriculture. Yet our knowledge of such mechanisms in wild species is scant. We performed metabolic pathway reconstruction using transcriptome information from 32 Atacama and phylogenetically related species that do not live in Atacama (Sisters species). We analyzed reaction enrichment to understand the commonalities and differences of Atacama plants. To gain insights into the mechanisms that ensure survival, we compared expressed gene isoform numbers and gene expression patterns between the annotated biochemical reactions from 32 Atacama and Sister species. We found biochemical convergences characterized by reactions enriched in at least 50% of the Atacama species, pointing to potential advantages against drought and nitrogen starvation, for instance. These findings suggest that the adaptation in the Atacama Desert may result in part from shared genetic legacies governing the expression of key metabolic pathways to face harsh conditions. Enriched reactions corresponded to ubiquitous compounds common to extreme and agronomic species and were congruent with our previous metabolomic analyses. Convergent adaptive traits offer promising candidates for improving abiotic stress resilience in crop species.
  • No Thumbnail Available
    Item
    Plant ecological genomics at the limits of life in the Atacama Desert
    (2021) Eshel, Gil; Araus, Viviana; Undurraga, Soledad; Soto, Daniela C.; Moraga, Carol; Montecinos, Alejandro; Moyano, Tomas; Maldonado, Jonathan; Diaz, Francisca P.; Varala, Kranthi; Nelson, Chase W.; Contreras-Lopez, Orlando; Pal-Gabor, Henrietta; Kraiser, Tatiana; Carrasco-Puga, Gabriela; Nilo-Poyanco, Ricardo; Zegar, Charles M.; Orellana, Ariel; Montecino, Martin; Maass, Alejandro; Allende, Miguel L.; DeSalle, Robert; Stevenson, Dennis W.; Gonzalez, Mauricio; Latorre, Claudio; Coruzzi, Gloria M.; Gutierrez, Rodrigo A.
    The Atacama Desert in Chile-hyperarid and with high-ultraviolet irradiance levels-is one of the harshest environments on Earth. Yet, dozens of species grow there, including Atacama-endemic plants. Herein, we establish the Talabre-Leji = a transect (TLT) in the Atacama as an unparalleled natural laboratory to study plant adaptation to extreme environmental conditions. We characterized climate, soil, plant, and soil-microbe diversity at 22 sites (every 100 m of altitude) along the TLT over a 10-y period. We quantified drought, nutrient deficiencies, large diurnal temperature oscillations, and pH gradients that define three distinct vegetational belts along the altitudinal cline. We deep-sequenced transcriptomes of 32 dominant plant species spanning the major plant clades, and assessed soil microbes by metabarcoding sequencing. The top-expressed genes in the 32 Atacama species are enriched in stress responses, metabolism, and energy production. Moreover, their root-associated soils are enriched in growthpromoting bacteria, including nitrogen fixers. To identify genes associated with plant adaptation to harsh environments, we compared 32 Atacama species with the 32 closest sequenced species, comprising 70 taxa and 1,686,950 proteins. To perform phylogenomic reconstruction, we concatenated 15,972 ortholog groups into a supermatrix of 8,599,764 amino acids. Using two codonbased methods, we identified 265 candidate positively selected genes (PSGs) in the Atacama plants, 64% of which are located in Pfam domains, supporting their functional relevance. For 59/184 PSGs with an Arabidopsis ortholog, we uncovered functional evidence linking them to plant resilience. As some Atacama plants are closely related to staple crops, these candidate PSGs are a "genetic goldmine" to engineer crop resilience to face climate change.
  • Loading...
    Thumbnail Image
    Item
    Plant pathogen responses to Late Pleistocene and Holocene climate change in the central Atacama Desert, Chile
    (2018) Wood, Jamie R.; Diaz, Francisca P.; Latorre H., Claudio; Wilmshurst, Janet M.; Burge, Olivia R.
  • No Thumbnail Available
    Item
    Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience
    (2022) Dussarrat, Thomas; Prigent, Sylvain; Latorre, Claudio; Bernillon, Stephane; Flandin, Amelie; Diaz, Francisca P.; Cassan, Cedric; Van Delft, Pierre; Jacob, Daniel; Varala, Kranthi; Joubes, Jerome; Gibon, Yves; Rolin, Dominique; Gutierrez, Rodrigo A.; Petriacq, Pierre
    Current crop yield of the best ideotypes is stagnating and threatened by climate change. In this scenario, understanding wild plant adaptations in extreme ecosystems offers an opportunity to learn about new mechanisms for resilience. Previous studies have shown species specificity for metabolites involved in plant adaptation to harsh environments. Here, we combined multispecies ecological metabolomics and machine learning-based generalized linear model predictions to link the metabolome to the plant environment in a set of 24 species belonging to 14 families growing along an altitudinal gradient in the Atacama Desert. Thirty-nine common compounds predicted the plant environment with 79% accuracy, thus establishing the plant metabolome as an excellent integrative predictor of environmental fluctuations. These metabolites were independent of the species and validated both statistically and biologically using an independent dataset from a different sampling year. Thereafter, using multiblock predictive regressions, metabolites were linked to climatic and edaphic stressors such as freezing temperature, water deficit and high solar irradiance. These findings indicate that plants from different evolutionary trajectories use a generic metabolic toolkit to face extreme environments. These core metabolites, also present in agronomic species, provide a unique metabolic goldmine for improving crop performances under abiotic pressure.
  • No Thumbnail Available
    Item
    'White gold' guano fertilizer drove agricultural intensification in the Atacama Desert from ad 1000
    (2021) Santana-Sagredo, Francisca; Schulting, Rick J.; Mendez-Quiros, Pablo; Vidal-Elgueta, Ale; Uribe, Mauricio; Loyola, Rodrigo; Maturana-Fernandez, Anahi; Diaz, Francisca P.; Latorre, Claudio; McRostie, Virginia B.; Santoro, Calogero M.; Mandakovic, Valentina; Harrod, Chris; Lee-Thorp, Julia
    The archaeological record shows that large pre-Inca agricultural systems supported settlements for centuries around the ravines and oases of northern Chile's hyperarid Atacama Desert. This raises questions about how such productivity was achieved and sustained, and its social implications. Using isotopic data of well-preserved ancient plant remains from Atacama sites, we show a dramatic increase in crop nitrogen isotope values (delta N-15) from around ad 1000. Maize was most affected, with delta N-15 values as high as +30 parts per thousand, and human bone collagen following a similar trend; moreover, their carbon isotope values (delta C-13) indicate a considerable increase in the consumption of maize at the same time. We attribute the shift to extremely high delta N-15 values-the highest in the world for archaeological plants-to the use of seabird guano to fertilize crops. Guano-'white gold' as it came to be called-thus sustained agricultural intensification, supporting a substantial population in an otherwise extreme environment.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback