• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Devanna, Rosa Pia"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Exploring the Frequency Domain Point Cloud Processing for Localisation Purposes in Arboreal Environments
    (2025) Devanna, Rosa Pia; Torres Torriti, Miguel Attilio; Sacilik, Kamil; Cetin, Necati; Auat Cheein, Fernando
    Point clouds from 3D sensors such as LiDAR are increasingly used in agriculture for tasks like crop characterisation, pest detection, and leaf area estimation. While traditional point cloud processing typically occurs in Cartesian space using methods such as principal component analysis (PCA), this paper introduces a novel frequency-domain approach for point cloud registration. The central idea is that point clouds can be transformed and analysed in the spectral domain, where key frequency components capture the most informative spatial structures. By selecting and registering only the dominant frequencies, our method achieves significant reductions in localisation error and computational complexity. We validate this approach using public datasets and compare it with standard Iterative Closest Point (ICP) techniques. Our method, which applies ICP only to points in selected frequency bands, reduces localisation error from 4.37 m to 1.22 m (MSE), an improvement of approximately 72%. These findings highlight the potential of frequency-domain analysis as a powerful and efficient tool for point cloud registration in agricultural and other GNSS-challenged environments.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback