Browsing by Author "Díaz-López, Carmen"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDynamics of Changes in Climate Zones and Building Energy Demand. A Case Study in Spain(2021) Díaz-López, Carmen ; Jódar, Joaquín ; Verichev, Konstantin ; Rodríguez, Miguel Luis ; Carpio, Manuel ; Zamorano, MontserratIn the current context of the climate crisis, it is essential to design buildings that can cope with climate dynamics throughout their life cycle. It will ensure the development of sustainable and resilient building stock. Thus, this study's primary objective has been to demonstrate that the current climatic zones for buildings in peninsular Spain do not represent the current climatic reality and are not adapted to climate change and the impact on the energy demand of buildings. For this reason, the climatic zones of 7967 peninsular cities have been updated and adapted to the RCP 4.5 and RCP 8.5 scenarios by using the data measured in 77 meteorological reference stations. The results obtained have shown that in more than 80% of the cities, buildings are designed and constructed according to an obsolete climatic classification that does not take into account the current or future climatic reality, which will significantly affect the thermal performance of a building and highlights the need to review the climatic zoning in the country. The results obtained can be extrapolated to other regions. The methodology defined in this work can be used as a reference, thus making an essential scientific contribution in reflecting on current capacities and the possibilities of improving the building stock.
- ItemInfluence of degree days calculation methods on the optimum thermal insulation thickness in life-cycle cost analysis for building envelopes in Mediterranean and semi-Arid climates(2023) Verichev, Konstantin; Serrano-Jiménez, Antonio; Carpio Martínez, Manuel; Barrios-Padura, Ángela; Díaz-López, CarmenThe life-cycle cost analysis (LCCA) is one of the most widely used and validated methods to identify the optimum insulation thickness of the building envelope. This method depends on two parameters—heating and cooling degree days (HDD, and CDD). There are various methods for HDD and CDD calculation, the results of which vary significantly depending on the climatic zone. Therefore, this study aimed to analyse the optimum expanded polystyrene insulation thicknesses of a typical wall in Andalusia, Spain, obtained by the LCCA method to demonstrate variations and uncertainties of the results of the LCCA method based on HDD and CDD calculated by the “hourly”, UKMO, and ASHRAE methods, and with different base temperatures in the conditions of Mediterranean and Semi-Arid climates. On average, the HDD values calculated by using the ASHRAE method were lower, by 12.5%, than those calculated using UKMO and the “hourly” method. The CDD values calculated using the ASHRAE method were lower, by 29%, than those obtained using UKMO and the “hourly” method. Consequently, the optimum insulation thicknesses determined based on CDD and HDD calculated using the ASHRAE method were, on average, 14% underestimated compared with the thicknesses obtained using the UKMO and “hourly” methods. The results obtained showed that with an increase in the continentality of the climate, it becomes crucial to correctly use one or another method for calculating degree days to determine the optimum insulation of the building envelope using the LCCA method, which, in turn, requires the development of validation methods.