• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Díaz Titelman, Pablo"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Model predictive control based on machine learning techniques for paste tailing production
    (2018) Díaz Titelman, Pablo; Cipriano, Aldo; Pontificia Universidad Católica de Chile. Escuela de Ingeniería
    La producción de relaves en pasta es un tema relativamente nuevo en la industria minera. Lidiar con los altos niveles de concentración de sólidos hace que la operación del espesador sea particularmente difícil y desafiante de controlar. El Control Predictivo basado en Modelos es una de las principales técnicas utilizadas en procesos industriales. Tradicionalmente, las estrategias predictivas se han basado en modelos lineales del sistema. Sin embargo, procesos como la producción de pasta y la operación de espesadores son altamente no lineales y están sujetos a fuertes perturbaciones. Los algoritmos de Aprendizaje de Máquinas se han utilizado durante las últimas décadas para abordar estos problemas y generar modelos de mayor fidelidad. La técnica de Random Forests ha tenido éxito comercial y experimental significativo en los últimos años. Sin embargo, su uso en series de tiempo para predicción, pronóstico y control es escaso. La presente investigación propone un Controlador Predictivo basado en Random Forests para el proceso de producción de relaves en pasta. El objetivo principal es diseñar, implementar y validar esta estrategia a través de la simulación del proceso de espesamiento. El producto final es una herramienta de software de propósito general que conecta dicho algoritmo de Aprendizaje de Máquinas y el control predictivo. La estrategia propuesta se compara con otras tres técnicas de control referenciales, una de las cuales es también predictiva. Los resultados muestran que el nuevo controlador tiene mejor rendimiento en el rechazo a perturbaciones y seguimiento de referencias. Los resultados generales muestran que la estrategia desarrollada podría ser utilizada con éxito para la operación real de un espesador.
  • No Thumbnail Available
    Item
    Neural Network-Based Model Predictive Control of a Paste Thickener Over an Industrial Internet Platform
    (2020) Núñez Retamal, Felipe Eduardo; Langarica Chavira, Saúl Alberto; Díaz Titelman, Pablo; Torres, Mario; Salas, Juan Carlos
    This article presents a real implementation of a neural network-based model predictive control scheme (NNMPC) to control an industrial paste thickener. The implementation is done over an Industrial Internet of Things (IIoT) platform designed using the seven layer reference model for IIoT systems. Modeling is achieved using an encoder-decoder with attention recurrent neural network, while MPC search is done using particle swarm optimization. An industrial evaluation is presented, which highlights the set-point tracking and disturbance rejection capabilities of the proposed NNMPC technique.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback