Browsing by Author "D'Alessandro, G."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemQUBIC Experiment Toward the First Light(2022) D'Alessandro, G.; Battistelli, E. S.; de Bernardis, P.; De Petris, M.; Gamboa Lerena, M. M.; Grandsire, L.; Hamilton, J-Ch; Marnieros, S.; Masi, S.; Mennella, A.; Mousset, L.; O'Sullivan, C.; Piat, M.; Tartari, A.; Torchinsky, S. A.; Voisin, F.; Zannoni, M.; Ade, P.; Alberro, J. G.; Almela, A.; Amico, G.; Arnaldi, L. H.; Auguste, D.; Aumont, J.; Azzoni, S.; Banfi, S.; Bau, A.; Belier, B.; Bennett, D.; Berge, L.; Bernard, J-Ph; Bersanelli, M.; Bigot-Sazy, M-A; Bonaparte, J.; Bonis, J.; Bunn, E.; Burke, D.; Buzi, D.; Cavaliere, F.; Chanial, P.; Chapron, C.; Charlassier, R.; Cobos Cerutti, A. C.; Columbro, F.; Coppolecchia, A.; De Gasperis, G.; De Leo, M.; Dheilly, S.; Duca, C.; Dumoulin, L.; Etchegoyen, A.; Fasciszewski, A.; Ferreyro, L. P.; Fracchia, D.; Franceschet, C.; Ganga, K. M.; Garcia, B.; Garcia Redondo, M. E.; Gaspard, M.; Gayer, D.; Gervasi, M.; Giard, M.; Gilles, V; Giraud-Heraud, Y.; Gomez Berisso, M.; Gonzalez, M.; Gradziel, M.; Hampel, M. R.; Harari, D.; Henrot-Versille, S.; Incardona, F.; Jules, E.; Kaplan, J.; Kristukat, C.; Lamagna, L.; Loucatos, S.; Louis, T.; Maffei, B.; Marty, W.; Mattei, A.; May, A.; McCulloch, M.; Mele, L.; Melo, D.; Montier, L.; Mundo, L. M.; Murphy, J. A.; Murphy, J. D.; Nati, F.; Olivieri, E.; Oriol, C.; Paiella, A.; Pajot, F.; Passerini, A.; Pastoriza, H.; Pelosi, A.; Perbost, C.; Perciballi, M.; Pezzotta, F.; Piacentini, F.; Piccirillo, L.; Pisano, G.; Platino, M.; Polenta, G.; Prele, D.; Presta, G.; Puddu, R.; Rambaud, D.; Rasztocky, E.; Ringegni, P.; Romero, G. E.; Salum, J. M.; Schillaci, A.; Scoccola, C. G.; Scully, S.; Spinelli, S.; Stankowiak, G.; Stolpovskiy, M.; Supanitsky, A. D.; Thermeau, J-P; Timbie, P.; Tomasi, M.; Tucker, G.; Tucker, C.; Vigano, D.; Vittorio, N.; Wicek, F.; Wright, M.; Zullo, A.The Q & U Bolometric Interferometer for Cosmology (QUBIC) is a cosmology experiment that aims to measure the B-mode polarization of the cosmic microwave background (CMB). Measurements of the primordial B-mode pattern of the CMB polarization are in fact among the most exciting goals in cosmology as it would allow testing of the inflationary paradigm. Many experiments are attempting to measure the B-modes, from the ground and the stratosphere, using imaging Stokes polarimeters. The QUBIC collaboration developed an innovative concept to measure CMB polarization using bolometric interferometry. This approach mixes the high sensitivity of bolometric detectors with the accurate control of systematics due to the interferometric layout of the instrument. We present the calibration results for the Technological Demonstrator, before its commissioning in the Argentinian observing site and preparation for first light.
- ItemQUBIC I: Overview and science program(2022) Hamilton, J. -Ch.; Mousset, L.; Battistelli, E. S.; de Bernardis, P.; Bigot-Sazy, M. -A.; Chanial, P.; Charlassier, R.; D'Alessandro, G.; De Petris, M.; Lerena, M. M. Gamboa; Grandsire, L.; Landau, S.; Mandelli, S.; Marnieros, S.; Masi, S.; Mennella, A.; O'Sullivan, C.; Piat, M.; Ricciardi, G.; Scoccola, C. G.; Stolpovskiy, M.; Tartari, A.; Torchinsky, S. A.; Voisin, F.; Zannoni, M.; Ade, P.; Alberro, J. G.; Almela, A.; Amico, G.; Arnaldi, L. H.; Auguste, D.; Aumont, J.; Azzoni, S.; Banfi, S.; Bau, A.; Belier, B.; Bennett, D.; Berge, L.; Bernard, J. -Ph.; Bersanelli, M.; Bonaparte, J.; Bonis, J.; Bunn, E.; Burke, D.; Buzi, D.; Cavaliere, F.; Chapron, C.; Cerutti, A. C. Cobos; Columbro, F.; Coppolecchia, A.; De Gasperis, G.; De Leo, M.; Dheilly, S.; Duca, C.; Dumoulin, L.; Etchegoyen, A.; Fasciszewski, A.; Ferreyro, L. P.; Fracchia, D.; Franceschet, C.; Ganga, K. M.; Garcia, B.; Redondo, M. E. Garcia; Gaspard, M.; Gayer, D.; Gervasi, M.; Giard, M.; Gilles, V.; Giraud-Heraud, Y.; Berisso, M. Gomez; Gonzalez, M.; Gradziel, M.; Hampel, M. R.; Harari, D.; Henrot-Versille, S.; Incardona, F.; Jules, E.; Kaplan, J.; Kristukat, C.; Lamagna, L.; Loucatos, S.; Louis, T.; Maffei, B.; Marty, W.; Mattei, A.; May, A.; McCulloch, M.; Mele, L.; Melo, D.; Montier, L.; Mundo, L. M.; Murphy, J. A.; Murphy, J. D.; Nati, F.; Olivieri, E.; Oriol, C.; Paiella, A.; Pajot, F.; Passerini, A.; Pastoriza, H.; Pelosi, A.; Perbost, C.; Perciballi, M.; Pezzotta, F.; Piacentini, F.; Piccirillo, L.; Pisano, G.; Platino, M.; Polenta, G.; Prele, D.; Puddu, R.; Rambaud, D.; Rasztocky, E.; Ringegni, P.; Romero, G. E.; Salum, J. M.; Schillaci, A.; Scully, S.; Spinelli, S.; Stankowiak, G.; Supanitsky, A. D.; Thermeau, J. -P.; Timbie, P.; Tomasi, M.; Tucker, C.; Tucker, G.; Vigano, D.; Vittorio, N.; Wicek, F.; Wright, M.; Zullo, A.The Q & U Bolometric Interferometer for Cosmology (QUBIC) is a novel kind of polarimeter optimized for the measurement of the B-mode polarization of the Cosmic Mi-crowave Background (CMB), which is one of the major challenges of observational cosmology. The signal is expected to be of the order of a few tens of nK, prone to instrumental system-atic effects and polluted by various astrophysical foregrounds which can only be controlled through multichroic observations. QUBIC is designed to address these observational issues with a novel approach that combines the advantages of interferometry in terms of control of instrumental systematic effects with those of bolometric detectors in terms of wide-band, background-limited sensitivity. The QUBIC synthesized beam has a frequency-dependent shape that results in the ability to produce maps of the CMB polarization in multiple sub-bands within the two physical bands of the instrument (150 and 220 GHz). These features make QUBIC complementary to other instruments and makes it particularly well suited to characterize and remove Galactic foreground contamination. In this article, first of a series of eight, we give an overview of the QUBIC instrument design, the main results of the calibration campaign, and present the scientific program of QUBIC including not only the measurement of primordial B-modes, but also the measurement of Galactic foregrounds. We give forecasts for typical observations and measurements: with three years of integration on the sky and assuming perfect foreground removal as well as stable atmospheric conditions from our site in Argentina, our simulations show that we can achieve a statistical sensitivity to the effective tensor-to-scalar ratio (including primordial and foreground B-mo des) Sigma(r) = 0.015.
- ItemQUBIC V: Cryogenic system design and performance(2022) Masi, S.; de Bernardis, P.; Chapron, C.; Columbro, F.; Coppolecchia, A.; D'Alessandro, G.; Battistelli, E. S.; De Petris, M.; Grandsire, L.; Hamilton, J-Ch; Lamagna, L.; Marnieros, S.; May, A.; Mele, L.; Mennella, A.; O'Sullivan, C.; Paiella, A.; Piacentini, F.; Piat, M.; Piccirillo, L.; Presta, G.; Schillaci, A.; Tartari, A.; Thermeau, J-P; Torchinsky, S. A.; Voisin, F.; Zannoni, M.; Ade, P.; Alberro, J. G.; Almela, A.; Amico, G.; Arnaldi, L. H.; Auguste, D.; Aumont, J.; Azzoni, S.; Banfi, S.; Bau, A.; Belier, B.; Bennett, D.; Berge, L.; Bernard, J-Ph; Bersanelli, M.; Bigot-Sazy, M-A; Bonaparte, J.; Bonis, J.; Bunn, E.; Burke, D.; Buzi, D.; Cavaliere, F.; Chanial, P.; Charlassier, R.; Cobos Cerutti, A. C.; De Gasperis, G.; De Leo, M.; Dheilly, S.; Duca, C.; Dumoulin, L.; Etchegoyen, A.; Fasciszewski, A.; Ferreyro, L. P.; Fracchia, D.; Franceschet, C.; Gamboa Lerena, M. M.; Ganga, K. M.; Garcia, B.; Garcia Redondo, M. E.; Gaspard, M.; Gayer, D.; Gervasi, M.; Giard, M.; Gilles, V; Giraud-Heraud, Y.; Gomez Berisso, M.; Gonzalez, M.; Gradziel, M.; Hampel, M. R.; Harari, D.; Henrot-Versille, S.; Incardona, F.; Jules, E.; Kaplan, J.; Kristukat, C.; Loucatos, S.; Louis, T.; Maffei, B.; Marty, W.; Mattei, A.; McCulloch, M.; Melo, D.; Montier, L.; Mousset, L.; Mundo, L. M.; Murphy, J. A.; Murphy, J. D.; Nati, F.; Olivieri, E.; Oriol, C.; Pajot, F.; Passerini, A.; Pastoriza, H.; Pelosi, A.; Perbost, C.; Perciballi, M.; Pezzotta, F.; Pisano, G.; Platino, M.; Polenta, G.; Prele, D.; Puddu, R.; Rambaud, D.; Rasztocky, E.; Ringegni, P.; Romero, G. E.; Salum, J. M.; Scoccola, C. G.; Scully, S.; Spinelli, S.; Stankowiak, G.; Stolpovskiy, M.; Supanitsky, A. D.; Timbie, P.; Tomasi, M.; Tucker, C.; Tucker, G.; Vigano, D.; Vittorio, N.; Wicek, F.; Wright, M.; Zullo, A.Current experiments aimed at measuring the polarization of the Cosmic Microwave Background (CMB) use cryogenic detector arrays with cold optical systems to boost their mapping speed. For this reason, large volume cryogenic systems with large optical windows, working continuously for years, are needed. The cryogenic system of the QUBIC (Q & U Bolometric Interferometer for Cosmology) experiment solves a combination of simultaneous requirements: very large optical throughput (similar to 40 cm(2)sr), large volume (similar to 4 m(3)) and large mass (similar to 165 kg) of the cryogenic instrument. Here we describe its design, fabrication, experimental optimization and validation in the Technological Demonstrator configuration. The QUBIC cryogenic system is based on a large volume cryostat that uses two pulse-tube refrigerators to cool the instrument to similar to 3K. The instrument includes the cryogenic polarization modulator, the corrugated feedhorn array, and the lower temperature stages: a He-4 evaporator cooling the interferometer beam combiner to -1K and a He-3 evaporator cooling the focal-plane detector arrays to similar to 0.3K. The cryogenic system has been tested and validated for more than 6 months of continuous operation. The detector arrays have reached a stable operating temperature of 0.33 K, while the polarization modulator has operated at a similar to 10K base temperature. The system has been tilted to cover the boresight elevation range 20 degrees-90 degrees without significant temperature variations. The instrument is now ready for deployment to the high Argentinean Andes.
- ItemQUBIC VI: Cryogenic half wave plate rotator, design and performance(2022) D'Alessandro, G.; Mele, L.; Columbro, F.; Amico, G.; Battistelli, E. S.; de Bernardis, P.; Coppolecchia, A.; De Petris, M.; Grandsire, L.; Hamilton, J-Ch; Lamagna, L.; Marnieros, S.; Masi, S.; Mennella, A.; O'Sullivan, C.; Paiella, A.; Piacentini, F.; Piat, M.; Pisano, G.; Presta, G.; Tartari, A.; Torchinsky, S. A.; Voisin, F.; Zannoni, M.; Ade, P.; Alberro, J. G.; Almela, A.; Arnaldi, L. H.; Auguste, D.; Aumont, J.; Azzoni, S.; Banfi, S.; Bau, A.; Belier, B.; Bennett, D.; Berge, L.; Bernard, J-Ph; Bersanelli, M.; Bigot-Sazy, M-A; Bonaparte, J.; Bonis, J.; Bunn, E.; Burke, D.; Buzi, D.; Cavaliere, F.; Chanial, P.; Chapron, C.; Charlassier, R.; Cobos Cerutti, A. C.; De Gasperis, G.; De Leo, M.; Dheilly, S.; Duca, C.; Dumoulin, L.; Etchegoyen, A.; Fasciszewski, A.; Ferreyro, L. P.; Fracchia, D.; Franceschet, C.; Gamboa Lerena, M. M.; Ganga, K. M.; Garcia, B.; Garcia Redondo, M. E.; Gaspard, M.; Gayer, D.; Gervasi, M.; Giard, M.; Gilles, V; Giraud-Heraud, Y.; Gomez Berisso, M.; Gonzalez, M.; Gradziel, M.; Hampel, M. R.; Harari, D.; Henrot-Versille, S.; Incardona, F.; Jules, E.; Kaplan, J.; Kristukat, C.; Loucatos, S.; Louis, T.; Maffei, B.; Marty, W.; Mattei, A.; May, A.; McCulloch, M.; Melo, D.; Montier, L.; Mousset, L.; Mundo, L. M.; Murphy, J. A.; Murphy, J. D.; Nati, F.; Olivieri, E.; Oriol, C.; Pajot, F.; Passerini, A.; Pastoriza, H.; Pelosi, A.; Perbost, C.; Perciballi, M.; Pezzotta, F.; Piccirillo, L.; Platino, M.; Polenta, G.; Prele, D.; Puddu, R.; Rambaud, D.; Rasztocky, E.; Ringegni, P.; Romero, G. E.; Salum, J. M.; Schillaci, A.; Scoccola, C. G.; Scully, S.; Spinelli, S.; Stankowiak, G.; Stolpovskiy, M.; Supanitsky, A. D.; Thermeau, J-P; Timbie, P.; Tomasi, M.; Tucker, C.; Tucker, G.; Vigano, D.; Vittorio, N.; Wicek, F.; Wright, M.; Zullo, A.Setting an upper limit or detection of B-mode polarization imprinted by gravitational waves from Inflation is one goal of modern large angular scale cosmic microwave background (CMB) experiments around the world. A great effort is being made in the deployment of many ground-based, balloon-borne and satellite experiments, using different methods to separate this faint polarized component from the incoming radiation. QUBIC exploits one of the most widely-used techniques to extract the input Stokes parameters, consisting in a rotating half-wave plate (HWP) and a linear polarizer to separate and modulate polarization components. QUBIC uses a step-by-step rotating HWP, with 15 degrees steps, combined with a 0.4 degrees s(-1) azimuth sky scan speed. The rotation is driven by a stepper motor mounted on the cryostat outer shell to avoid heat load at internal cryogenic stages. The design of this optical element is an engineering challenge due to its large 370 mm diameter and the 8K operation temperature that are unique features of the QUBIC experiment. We present the design for a modulator mechanism for up to 370 mm, and the first optical tests by using the prototype of QUBIC HWP (180 mm diameter). The tests and results presented in this work show that the QUBIC HWP rotator can achieve a precision of 0.15 degrees in position by using the stepper motor and custom-made optical encoder. The rotation induces < 5.0 mW (95% C.L) of power load on the 4K stage, resulting in no thermal issues on this stage during measurements. We measure a temperature settle-down characteristic time of 28 s after a rotation through a 15 degrees step, compatible with the scanning strategy, and we estimate a maximum temperature gradient within the HWP of <= 10 mK. This was calculated by setting up finite element thermal simulations that include the temperature profiles measured during the rotator operations. We report polarization modulation measurements performed at 150 GHz, showing a polarization efficiency > 99% (68% C.L.) and a median cross-polarization chi(Pol) of 0.12%, with 71% of detectors showinga chi(Pol )+ 2 sigma upper limit < 1%, measured using selected detectors that had the best signal-to-noise ratio.
- ItemQUBIC VIII: Optical design and performance(2022) O'Sullivan, C.; De Petris, M.; Amico, G.; Battistelli, E. S.; de Bernardis, P.; Burke, D.; Buzi, D.; Chapron, C.; Conversi, L.; D'Alessandro, G.; De Leo, M.; Gayer, D.; Grandsire, L.; Hamilton, J-Ch; Marnieros, S.; Masi, S.; Mattei, A.; Mennella, A.; Mousset, L.; Murphy, J. D.; Pelosi, A.; Perciballi, M.; Piat, M.; Scully, S.; Tartari, A.; Torchinsky, S. A.; Voisin, F.; Zannoni, M.; Zullo, A.; Ade, P.; Alberro, J. G.; Almela, A.; Arnaldi, L. H.; Auguste, D.; Aumont, J.; Azzoni, S.; Banfi, S.; Bau, A.; Belier, B.; Bennett, D.; Berge, L.; Bernard, J-Ph; Bersanelli, M.; Bigot-Sazy, M-A; Bonaparte, J.; Bonis, J.; Bunn, E.; Cavaliere, F.; Chanial, P.; Charlassier, R.; Cobos Cerutti, A. C.; Columbro, F.; Coppolecchia, A.; De Gasperis, G.; Dheilly, S.; Duca, C.; Dumoulin, L.; Etchegoyen, A.; Fasciszewski, A.; Ferreyro, L. P.; Fracchia, D.; Franceschet, C.; Gamboa Lerena, M. M.; Ganga, K. M.; Garcia, B.; Garcia Redondo, M. E.; Gaspard, M.; Gervasi, M.; Giard, M.; Gilles, V; Giraud-Heraud, Y.; Gomez Berisso, M.; Gonzalez, M.; Gradziel, M.; Hampel, M. R.; Harari, D.; Henrot-Versille, S.; Incardona, F.; Jules, E.; Kaplan, J.; Kristukat, C.; Lamagna, L.; Loucatos, S.; Louis, T.; Maffei, B.; Marty, W.; May, A.; McCulloch, M.; Mele, L.; Melo, D.; Montier, L.; Mundo, L. M.; Murphy, J. A.; Nati, F.; Olivieri, E.; Oriol, C.; Paiella, A.; Pajot, F.; Passerini, A.; Pastoriza, H.; Perbost, C.; Pezzotta, F.; Piacentini, F.; Piccirillo, L.; Pisano, G.; Platino, M.; Polenta, G.; Prele, D.; Puddu, R.; Rambaud, D.; Rasztocky, E.; Ringegni, P.; Romero, G. E.; Salum, J. M.; Schillaci, A.; Scoccola, C. G.; Spinelli, S.; Stankowiak, G.; Stolpovskiy, M.; Supanitsky, A. D.; Thermeau, J-P; Timbie, P.; Tomasi, M.; Tucker, C.; Tucker, G.; Vigano, D.; Vittorio, N.; Wicek, F.; Wright, M.The Q and U Bolometric Interferometer for Cosmology (QUBIC) is a ground-based experiment that aims to detect B-mode polarization anisotropies [1] in the CMB at angular scales around the l similar or equal to 100 recombination peak. Systematic errors make ground-based observations of B modes at millimetre wavelengths very challenging and QUBIC mitigates these problems in a somewhat complementary way to other existing or planned experiments using the novel technique of bolometric interferometry. This technique takes advantage of the sensitivity of an imager and the systematic error control of an interferometer. A cold reflective optical combiner superimposes the re-emitted beams from 400 aperture feedhorns on two focal planes. A shielding system composed of a fixed groundshield, and a forebaffle that moves with the instrument, limits the impact of local contaminants. The modelling, design, manufacturing and preliminary measurements of the optical components are described in this paper.
- ItemTES Bolometer Arrays for the QUBIC B-Mode CMB Experiment(2020) Marnieros, S.; Ade, P.; Alberro, J. G.; Almela, A.; Amico, G.; Arnaldi, L. H.; Auguste, D.; Aumont, J.; Azzoni, S.; Puddu, Roberto; Banfi, S.; Battaglia, P.; Battistelli, E. S.; Baú, A.; Bélier, B.; Bennett, D.; Bergé, L.; Bernard, J. P.; Bersanelli, M.; Bigot-Sazy, M. A.; Bleurvacq, N.; Bonaparte, J.; Bonis, J.; Bottani, A.; Bunn, E.; Burke, D.; Buzi, D.; Cavaliere, F.; Chanial, P.; Chapron, C.; Charlassier, R.; Columbro, F.; Coppolecchia, A.; D'Alessandro, G.; de Bernardis, P.; De Gasperis, G.; De Leo, M.; De Petris, M.; Dheilly, S.; Dumoulin, L.; Etchegoyen, A.; Fasciszewski, A.; Ferreyro, L. P.; Fracchia, D.; Franceschet, C.; Lerena, M. M. G.; Ganga, K.; García, B.; Redondo, M. E. G.; Gaspard, M.