Browsing by Author "Csabai, I"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- ItemBroad absorption line quasars in the Sloan Digital Sky Survey with VLA first radio detections(2001) Menou, K; Vanden Berg, DE; Kim, RSJ; Knapp, GR; Richards, GT; Strateva, I; Fan, XH; Gunn, JE; Hall, PB; Heckman, T; Krolik, J; Lupton, RH; Schneider, DP; York, DG; Anderson, SF; Bahcall, NA; Brinkmann, J; Brunner, R; Csabai, I; Fukugita, M; Hennessy, GS; Kunszt, PZ; Lamb, DQ; Munn, JA; Nichol, RC; Szokoly, GPWe present 13 broad absorption line (BAL) quasars, including 12 new objects, identified in the Sloan Digital Sky Survey (SDSS) and matched within 2 " to sources in the FIRST radio survey catalog. The surface density of this sample of radio-detected BAL quasars is 4.5 +/- 1.2 per 100 deg(2), i.e., approximately 4 times as high as previously found by the shallower FIRST Bright Quasar Survey (FBQS). A majority of these radio-detected BAL quasars are moderately radio-loud objects. The fraction of BAL quasars in the entire radio quasar sample, 4.8% +/- 1.3%, is comparable to the fraction of BAL quasars among the SDSS optical quasar sample (ignoring selection effects). We estimate that the true fraction of BAL quasars (mostly "HiBALs") in the radio sample is 9.2% +/- 2.6%, once selection effects are accounted for. We caution that the absorption troughs of four of the 13 radio-detected quasars considered do not strictly satisfy the standard BALnicity criteria. One or possibly two of the new radio-detected BAL quasars are of the rare "FeLoBAL" type. BAL quasars are generally redder than the median SDSS quasar at the same redshift.
- ItemComposite quasar spectra from the Sloan Digital Sky Survey(2001) Vanden Berk, DE; Richards, GT; Bauer, A; Strauss, MA; Schneider, DP; Heckman, TM; York, DG; Hall, PB; Fan, XH; Knapp, GR; Anderson, SF; Annis, J; Bahcall, NA; Bernardi, M; Briggs, JW; Brinkmann, J; Brunner, R; Burles, S; Carey, L; Castander, FJ; Connolly, AJ; Crocker, JH; Csabai, I; Doi, M; Finkbeiner, D; Friedman, S; Frieman, JA; Fukugita, M; Gunn, JE; Hennessy, GS; Ivezic, Z; Kent, S; Kunszt, PZ; Lamb, DQ; Leger, RF; Long, DC; Loveday, J; Lupton, RH; Meiksin, A; Pier, JR; Pope, A; Rockosi, CM; Schlegel, DJ; Siegmund, WA; Smee, S; Snir, Y; Stoughton, C; Stubbs, C; SubbaRao, M; Szalay, AS; Szokoly, GP; Tremonti, C; Uomoto, A; Waddell, P; Yanny, B; Zheng, WWe have created a variety of composite quasar spectra using a homogeneous data set of over 2200 spectra from the Sloan Digital Sky Survey (SDSS). The quasar sample spans a redshift range of 0.044 less than or equal to z less than or equal to 4.789 and an absolute r' magnitude range of -18.0 to -26.5. The input spectra cover an observed wavelength range of 3800-9200 Angstrom at a resolution of 1800. The median composite covers a rest-wavelength range from 800 to 8555 Angstrom and reaches a peak signal-to-noise ratio of over 300 per 1 Angstrom resolution element in the rest frame. We have identified over 80 emission-line features in the spectrum. Emission-line shifts relative to nominal laboratory wavelengths are seen for many of the ionic species. Peak shifts of the broad permitted and semiforbidden lines are strongly correlated with ionization energy, as previously suggested, but we find that the narrow forbidden lines are also shifted by amounts that are strongly correlated with ionization energy. The magnitude of the forbidden line shifts is less than or similar to 100 km s(-1), compared with shifts of up to 550 km s(-1) for some of the permitted and semiforbidden lines. At wavelengths longer than the Ly alpha emission, the continuum of the geometric mean composite is well fitted by two power laws, with a break at approximate to 5000 Angstrom. The frequency power-law index, alpha (v), is -0.44 from approximate to 1300 to 5000 and -2.45 redward of approximate to 5000 The abrupt change in slope can be accounted for partly by host-galaxy contamination at low redshift. Stellar absorption lines, including higher order Balmer lines, seen in the composites suggest that young or intermediate-age stars make a significant contribution to the light of the host galaxies. Most of the spectrum is populated by blended emission lines, especially in the range 1500-3500 Angstrom, which can make the estimation of quasar continua highly uncertain unless large ranges in wavelength are observed. An electronic table of the median quasar template is available.
- ItemFaint high-latitude carbon stars discovered by the Sloan Digital Sky Survey: Methods and initial results(2002) Margon, B; Anderson, SF; Harris, HC; Strauss, MA; Knapp, GR; Fan, XH; Schneider, DP; Berk, DEV; Schlegel, DJ; Deutsch, EW; Ivezic, Z; Hall, PB; Williams, BF; Davidsen, AF; Brinkmann, J; Csabai, I; Hayes, JJE; Hennessy, G; Kinney, EK; Kleinman, SJ; Lamb, DQ; Long, D; Neilsen, EH; Nichol, R; Nitta, A; Snedden, SA; York, DGWe report the discovery of 39 faint high-latitude carbon stars (FHLCs) from Sloan Digital Sky Survey (SDSS) commissioning data. The objects, each selected photometrically and verified spectroscopically, range over 16.6 < r* < 20.0 and show a diversity of temperatures as judged by both colors and NaD line strengths. Although a handful of these stars were previously known, these objects are, in general, too faint and too warm to be effectively identified in other modern surveys such as the Two Micron All Sky Survey, nor are their red/near-IR colors particularly distinctive. The implied surface density of FHLCs in this magnitude range is uncertain at this preliminary stage of the survey because of completeness corrections but is clearly greater than 0.05 deg(-2). At the completion of the Sloan survey, there will be many hundred homogeneously selected and observed FHLCs in this sample. We present proper-motion measures for each object, indicating that the sample is a mixture of extremely distant (greater than 100 kpc) halo giant stars, useful for constraining halo dynamics, and members of the recently recognized exotic class of very nearby dwarf carbon (dC) stars. The broadband colors of the two populations are indistinguishable. Motions, and thus dC classification, are inferred for 40%-50% of the sample, depending on the level of statistical significance invoked. The new list of dC stars presented here, although selected from only a small fraction of the final SDSS, doubles the number of such objects found by all previous methods. The observed kinematics suggest that the dwarfs occupy distinct halo and disk populations. The coolest FHLCs with detectable proper motions in our sample also display multiple CaH bands in their spectra. It may be that CaH is another long-sought, low-resolution, spectroscopic luminosity discriminant between dC's and distant faint giants, at least for the cooler stars.
- ItemPhotometric redshifts from reconstructed quasar templates(2001) Budavári, T; Csabai, I; Szalay, AS; Connolly, AJ; Szokoly, GP; Vanden Berk, DE; Richards, GT; Weinstein, MA; Schneider, DP; Benítez, N; Brinkman, J; Brunner, R; Hall, PB; Hennessy, GS; Ivezic, Z; Kunszt, PZ; Munn, JA; Nichol, RC; Pier, JR; York, DGFrom Sloan Digital Sky Survey (SDSS) commissioning photometric and spectroscopic data, we investigate the utility of photometric redshift techniques in the task of estimating QSO redshifts. We consider empirical methods (e.g., nearest neighbor searches and polynomial fitting), standard spectral template fitting, and hybrid approaches (i.e., training spectral templates from spectroscopic and photometric observations of QSOs). We find that in all cases, because of the presence of strong emission lines within the QSO spectra, the nearest neighbor and template-fitting methods are superior to the polynomial-fitting approach. Applying a novel reconstruction technique, we can, from the SDSS multicolor photometry, reconstruct a statistical representation of the underlying SEDs of the SDSS QSOs. Although the reconstructed templates are based on only broadband photometry, the common emission lines present within the QSO spectra can be recovered in the resulting spectral energy distributions. The technique should be useful in searching for spectral differences among QSOs at a given redshift, in searching for spectral evolution of QSOs, in comparing photometric redshifts for objects beyond the SDSS spectroscopic sample with those in the well-calibrated photometric redshifts for objects brighter than 20th magnitude, and in searching for systematic and time-variable effects in the SDSS broadband photometric and spectral photometric calibrations.
- ItemPhotometric redshifts of quasars(2001) Richards, GT; Weinstein, MA; Schneider, DP; Fan, XH; Strauss, MA; Vanden Berk, DE; Annis, J; Burles, S; Laubacher, EM; York, DG; Frieman, JA; Johnston, D; Scranton, R; Gunn, JE; Nichol, RC; Ivezic, Z; Nichol, RC; Budavári, T; Csabai, I; Szalay, AS; Connolly, AJ; Szokoly, GP; Bahcall, NA; Benítez, N; Brinkmann, J; Brunner, R; Fukugita, M; Hall, PB; Hennessy, GS; Knapp, GR; Kunszt, PZ; Lamb, DQ; Munn, JA; Newberg, HJ; Stoughton, CWe demonstrate that the design of the Sloan Digital Sky Survey (SDSS) filter system and the quality of the SDSS imaging data are sufficient for determining accurate and precise photometric redshifts of quasars. Using a sample of 2625 quasars, we show that "photo-z" determination is even possible for z less than or equal to2.2 despite the lack of a strong continuum break, which robust photo-z techniques normally require. We find that, using our empirical method on our sample of objects known to be quasars, approximately 70% of the photometric redshifts are correct to within Deltaz = 0.2; the fraction of correct photometric redshifts is even better for z >3. The accuracy of quasar photometric redshifts does not appear to be dependent upon magnitude to nearly 21st magnitude in i'. Careful calibration of the color-redshift relation to 21st magnitude may allow for the discovery of similar to 10(6) quasar candidates in addition to the 10(5) quasars that the SDSS will confirm spectroscopically. We discuss the efficient selection of quasar candidates from imaging data for use with the photometric redshift technique and the potential scientific uses of a large sample of quasar candidates with photometric redshifts.
- ItemRed and reddened quasars in the Sloan Digital Sky Survey(2003) Richards, GT; Hall, PB; Berk, DEV; Strauss, MA; Schneider, DP; Weinstein, MA; Reichard, TA; York, DG; Knapp, GR; Fan, XH; Ivezic, Z; Brinkmann, J; Budavári, T; Csabai, I; Nichol, RCWe investigate the overall continuum and emission-line properties of quasars as a function of their optical/ UV spectral energy distributions. Our sample consists of 4576 quasars from the Sloan Digital Sky Survey (SDSS) that were chosen using homogeneous selection criteria. Expanding on our previous work, which demonstrated that the optical/ UV color distribution of quasars is roughly Gaussian but with a red tail, here we distinguish between ( 1) quasars that have intrinsically blue ( optically. at) power-law continua, ( 2) quasars that have intrinsically red ( optically steep) power-law continua, and ( 3) quasars whose colors are inconsistent with a single power-law continuum. We find that 273 (6.0%) of the quasars in our sample fall into the latter category and appear to be redder because of SMC-like dust extinction and reddening rather than because of synchrotron emission. Even though the SDSS quasar survey is optically selected and flux-limited, we demonstrate that it is sensitive to dust reddened quasars with E( B - V) less than or similar to 0.5, assuming a classical SMC extinction curve. The color distribution of our SDSS quasar sample suggests that the population of moderately dust reddened, but otherwise normal (i.e., type 1) quasars is smaller than the population of unobscured quasars: we estimate that a further 10% of the quasar population with M(i) < - 25.61 is missing from the SDSS sample because of extinction, bringing the total fraction of dust-reddened quasars to 15% of broad-line quasars. We also investigate the emission- and absorption-line properties of these quasars as a function of color and comment on how some of these results relate to Boroson-Green- type eigenvectors. Quasars with intrinsically red ( optically steep) power-law continua tend to have narrower Balmer lines and weaker C IV, C III], He II, and 3000 angstrom bump emission as compared with bluer ( optically flatter) quasars. The change in strength of the 3000 angstrom bump appears to be dominated by the Balmer continuum and not by Fe II emission. The dust-reddened quasars have even narrower Balmer lines and weaker 3000 angstrom bumps, in addition to having considerably larger equivalent widths of [O II] and [ O III] emission. The fraction of broad absorption line quasars (BALQSOs) increases from similar to 3.4% for the bluest quasars to perhaps as large as 20% for the dust-reddened quasars, but the intrinsic color distribution will be much bluer if all BALQSOs are affected by dust reddening.
- ItemThe first data release of the Sloan Digital Sky Survey(2003) Abazajian, K; Adelman-McCarthy, JK; Agüeros, MA; Allam, SS; Anderson, SF; Annis, J; Bahcall, NA; Baldry, IK; Bastian, S; Berlind, A; Bernardi, M; Blanton, MR; Blythe, N; Bochanski, JJ; Boroski, WN; Brewington, H; Briggs, JW; Brinkmann, J; Brunner, RJ; Budavári, T; Carey, LN; Carr, MA; Castander, FJ; Chiu, K; Collinge, MJ; Connolly, AJ; Covey, KR; Csabai, I; Dalcanton, JJ; Dodelson, S; Doi, M; Dong, F; Eisenstein, DJ; Evans, ML; Fan, XH; Feldman, PD; Finkbeiner, DP; Friedman, SD; Frieman, JA; Fukugita, M; Gal, RR; Gillespie, B; Glazebrook, K; Gonzalez, CF; Gray, J; Grebel, EK; Grodnicki, L; Gunn, JE; Gurbani, VK; Hall, PB; Hao, L; Harbeck, D; Harris, FH; Harris, HC; Harvanek, M; Hawley, SL; Heckman, TM; Helmboldt, JF; Hendry, JS; Hennessy, GS; Hindsley, RB; Hogg, DW; Holmgren, DJ; Holtzman, JA; Homer, L; Hui, L; Ichikawa, SI; Ichikawa, T; Inkmann, JP; Ivezic, Z; Jester, S; Johnston, DE; Jordan, B; Jordan, WP; Jorgensen, AM; Juric, M; Kauffmann, G; Kent, SM; Kleinman, SJ; Knapp, GR; Kniazev, AY; Kron, RG; Krzesinski, J; Kunszt, PZ; Kuropatkin, N; Lamb, DQ; Lampeitl, H; Laubscher, BE; Lee, BC; Leger, RF; Li, N; Lidz, A; Lin, H; Loh, YS; Long, DC; Loveday, J; Lupton, RH; Malik, T; Margon, B; McGehee, PM; McKay, TA; Meiksin, A; Miknaitis, GA; Moorthy, BK; Munn, JA; Murphy, T; Nakajima, R; Narayanan, VK; Nash, T; Neilsen, EH; Newberg, HJ; Newman, PR; Nichol, RC; Nicinski, T; Nieto-Santisteban, M; Nitta, A; Odenkirchen, M; Okamura, S; Ostriker, JP; Owen, R; Padmanabhan, N; Peoples, J; Pier, JR; Pindor, B; Pope, AC; Quinn, TR; Rafikov, RR; Raymond, SN; Richards, GT; Richmond, MW; Rix, HW; Rockosi, CM; Schaye, J; Schlegel, DJ; Schneider, DP; Schroeder, J; Scranton, R; Sekiguchi, M; Seljak, U; Sergey, G; Sesar, B; Sheldon, E; Shimasaku, K; Siegmund, WA; Silvestri, NM; Sinisgalli, AJ; Sirko, E; Smith, JA; Smolcic, V; Snedden, SA; Stebbins, A; Steinhardt, C; Stinson, G; Stoughton, C; Strateva, IV; Strauss, MA; Subbarao, M; Szalay, AS; Szapudi, I; Szkody, P; Tasca, L; Tegmark, M; Thakar, AR; Tremonti, C; Tucker, DL; Uomoto, A; Vanden Berk, DE; Vandenberg, J; Vogeley, MS; Voges, W; Vogt, NP; Walkowicz, LM; Weinberg, DH; West, AA; White, SDM; Wilhite, BC; Willman, B; Xu, YZ; Yanny, B; Yarger, J; Yasuda, N; Yip, CW; Yocum, DR; York, DG; Zakamska, NL; Zehavi, I; Zheng, W; Zibetti, S; Zucker, DBThe Sloan Digital Sky Survey (SDSS) has validated and made publicly available its First Data Release. This consists of 2099 deg(2) of five-band (u, g, r, i, z) imaging data, 186,240 spectra of galaxies, quasars, stars and calibrating blank sky patches selected over 1360 deg(2) of this area, and tables of measured parameters from these data. The imaging data go to a depth of r approximate to 22.6 and are photometrically and astrometrically calibrated to 2% rms and 100 mas rms per coordinate, respectively. The spectra cover the range 3800-9200 Angstrom, with a resolution of 1800-2100. This paper describes the characteristics of the data with emphasis on improvements since the release of commissioning data (the SDSS Early Data Release) and serves as a pointer to extensive published and on-line documentation of the survey.
- ItemThe Sloan Digital Sky Survey Quasar Catalog. I. Early data release(2002) Schneider, DP; Richards, GT; Fan, XH; Hall, PB; Strauss, MA; Vanden Berk, DE; Gunn, JE; Newberg, HJ; Reichard, TA; Stoughton, C; Voges, W; Yanny, B; Anderson, SF; Annis, J; Bahcall, NA; Bauer, A; Bernardi, M; Blanton, MR; Boroski, WN; Brinkmann, J; Briggs, JW; Brunner, R; Burles, S; Carey, L; Castander, FJ; Connolly, AJ; Csabai, I; Doi, M; Friedman, S; Frieman, JA; Fukugita, M; Heckman, TM; Hennessy, GS; Hindsley, RB; Hogg, DW; Ivezic, Z; Kent, S; Knapp, GR; Kunzst, PZ; Lamb, DQ; Leger, RF; Long, DC; Loveday, J; Lupton, RH; Margon, B; Meiksin, A; Merelli, A; Munn, JA; Newcomb, M; Nichol, RC; Owen, R; Pier, JR; Pope, A; Rockosi, CM; Saxe, DH; Schlegel, D; Siegmund, WA; Smee, S; Snir, Y; SubbaRao, M; Szalay, AS; Thakar, AR; Uomoto, A; Waddell, P; York, DGWe present the first edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog. The catalog consists of the 3814 objects ( 3000 discovered by the SDSS) in the initial SDSS public data release that have at least one emission line with a full width at half-maximum larger than 1000 km s(-1), luminosities brighter than M(i*) = -23, and highly reliable redshifts. The area covered by the catalog is 494 deg(2); the majority of the objects were found in SDSS commissioning data using a multicolor selection technique. The quasar redshifts range from 0.15 to 5.03. For each object the catalog presents positions accurate to better than 0".2 rms per coordinate, five-band (ugriz) CCD-based photometry with typical accuracy of 0.05 mag, radio and X-ray emission properties, and information on the morphology and selection method. Calibrated spectra of all objects in the catalog, covering the wavelength region 3800-9200 Angstrom at a spectral resolution of 1800-2100, are also available. Since the quasars were selected during the commissioning period, a time when the quasar selection algorithm was undergoing frequent revisions, the sample is not homogeneous and is not intended for statistical analysis.