• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cortez, Manuel Fernando"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    On the Dynamics of Zero-Speed Solutions for Camassa-Holm-Type Equations
    (2021) Alejo, Miguel A.; Cortez, Manuel Fernando; Kwak, Chulkwang; Munoz, Claudio
    In this paper, we consider globally defined solutions of Camassa-Holm (CH)-type equations outside the well-known nonzero-speed, peakon region. These equations include the standard CH and Degasperis-Procesi (DP) equations, as well as nonintegrable generalizations such as the b-family, elastic rod, and Benjamin-Bona-Mahony (BBM) equations. Having globally defined solutions for these models, we introduce the notion of zero-speed and breather solutions, i.e., solutions that do not decay to zero as t ->+infinity on compact intervals of space. We prove that, under suitable decay assumptions, such solutions do not exist because the identically zero solution is the global attractor of the dynamics, at least in a spatial interval of size vertical bar x vertical bar less than or similar to t(1/2-) as t ->+infinity. As a consequence, we also show scattering and decay in CH-type equations with long-range nonlinearities. Our proof relies in the introduction of suitable virial functionals a la Martel-Merle in the spirit of the works of [74, 75] and [50] adapted to CH-, DP-, and BBM-type dynamics, one of them placed in L-x(1) and the 2nd one in the energy space H-x(1). Both functionals combined lead to local-in-space decay to zero in vertical bar x vertical bar less than or similar to t(1/2-) as t -> +infinity. Our methods do not rely on the integrable character of the equation, applying to other nonintegrable families of CH-type equations as well.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback