Browsing by Author "Cortes, Victor"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemImpact of short and long exposure to cafeteria diet on food intake and white adipose tissue lipolysis mediated by glucagon-like peptide 1 receptor(2023) Mattar, Pamela; Jaque, Cristian; Teske, Jennifer A.; Morselli, Eugenia; Kerr, Bredford; Cortes, Victor; Baudrand, Rene; Perez-Leighton, Claudio E.IntroductionThe modern food environment facilitates excessive calorie intake, a major driver of obesity. Glucagon-like peptide 1 (GLP1) is a neuroendocrine peptide that has been the basis for developing new pharmacotherapies against obesity. The GLP1 receptor (GLP1R) is expressed in central and peripheral tissues, and activation of GLP1R reduces food intake, increases the expression of thermogenic proteins in brown adipose tissue (BAT), and enhances lipolysis in white adipose tissue (WAT). Obesity decreases the efficiency of GLP1R agonists in reducing food intake and body weight. Still, whether palatable food intake before or during the early development of obesity reduces the effects of GLP1R agonists on food intake and adipose tissue metabolism remains undetermined. Further, whether GLP1R expressed in WAT contributes to these effects is unclear. MethodsFood intake, expression of thermogenic BAT proteins, and WAT lipolysis were measured after central or peripheral administration of Exendin-4 (EX4), a GLP1R agonist, to mice under intermittent-short exposure to CAF diet (3 h/d for 8 days) or a longer-continuous exposure to CAF diet (24 h/d for 15 days). Ex-vivo lipolysis was measured after EX4 exposure to WAT samples from mice fed CAF or control diet for 12 weeks. . ResultsDuring intermittent-short exposure to CAF diet (3 h/d for 8 days), third ventricle injection (ICV) and intra-peritoneal administration of EX4 reduced palatable food intake. Yet, during a longer-continuous exposure to CAF diet (24 h/d for 15 days), only ICV EX4 administration reduced food intake and body weight. However, this exposure to CAF diet blocked the increase in uncoupling protein 1 (UCP1) caused by ICV EX4 administration in mice fed control diet. Finally, GLP1R expression in WAT was minimal, and EX4 failed to increase lipolysis ex-vivo in WAT tissue samples from mice fed CAF or control diet for 12 weeks. . DiscussionExposure to a CAF diet during the early stages of obesity reduces the effects of peripheral and central GLP1R agonists, and WAT does not express a functional GLP1 receptor. These data support that exposure to the obesogenic food environment, without the development or manifestation of obesity, can alter the response to GLP1R agonists. .
- ItemMitofusin-2 induced by exercise modifies lipid droplet-mitochondria communication, promoting fatty acid oxidation in male mice with NAFLD(2024) Borquez, Juan Carlos; Diaz-Castro, Francisco; Pino-de La Fuente, Francisco; Espinoza, Karla; Figueroa, Ana Maria; Martinez-Ruiz, Inma; Hernandez, Vanessa; Lopez-Soldado, Iliana; Ventura, Raill; Domingo, Joan Carles; Bosch, Marta; Fajardo, Alba; Sebastian, David; Espinosa, Alejandra; Pol, Albert; Zorzano, Antonio; Cortes, Victor; Hernandez-Alvarez, Maria Isabel; Troncoso, RodrigoBackground and aim: The excessive accumulation of lipid droplets (LDs) is a defining characteristic of nonalcoholic fatty liver disease (NAFLD). The interaction between LDs and mitochondria is functionally important for lipid metabolism homeostasis. Exercise improves NAFLD, but it is not known if it has an effect on hepatic LD-mitochondria interactions. Here, we investigated the influence of exercise on LD-mitochondria interactions and its significance in the context of NAFLD. Approach and results: Mice were fed high-fat diet (HFD) or HFD-0.1 % methionine and choline-deficient diet (MCD) to emulate simple hepatic steatosis or non-alcoholic steatohepatitis, respectively. In both models, aerobic exercise decreased the size of LDs bound to mitochondria and the number of LD-mitochondria contacts. Analysis showed that the effects of exercise on HOMA-IR and liver triglyceride levels were independent of changes in body weight, and a positive correlation was observed between the number of LD-mitochondria contacts and NAFLD severity and with the lipid droplet size bound to mitochondria. Cellular fractionation studies revealed that ATP -coupled respiration and fatty acid oxidation (FAO) were greater in hepatic peridroplet mitochondria (PDM) from HFD-fed exercised mice than from equivalent sedentary mice. Finally, exercise increased FAO and mitofusin-2 abundance exclusively in PDM through a mechanism involving the curvature of mitochondrial membranes and the abundance of saturated lipids. Accordingly, hepatic mitofusin-2 ablation prevented exercise-induced FAO in PDM. Conclusions: This study demonstrates that aerobic exercise has beneficial effects in murine NAFLD models by lessening the interactions between hepatic LDs and mitochondria, and by decreasing LD size, correlating with a reduced severity of NAFLD. Additionally, aerobic exercise increases FAO in PDM and this process is reliant on Mfn-2 enrichment, which modifies LD-mitochondria communication.