Browsing by Author "Colas, F."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemFRIPON: a worldwide network to track incoming meteoroids(2020) Colas, F.; Zanda, B.; Bouley, S.; Jeanne, S.; Malgoyre, A.; Birlan, M.; Blanpain, C.; Gattacceca, J.; Jorda, L.; Lecubin, J.; Marmo, C.; Rault, J. L.; Vaubaillon, J.; Vernazza, P.; Yohia, C.; Gardiol, D.; Nedelcu, A.; Poppe, B.; Rowe, J.; Forcier, M.; Koschny, D.; Trigo-Rodriguez, J. M.; Lamy, H.; Behrend, R.; Ferriere, L.; Barghini, D.; Buzzoni, A.; Carbognani, A.; Di Carlo, M.; Di Martino, M.; Knapic, C.; Londero, E.; Pratesi, G.; Rasetti, S.; Riva, W.; Stirpe, G. M.; Valsecchi, G. B.; Volpicelli, C. A.; Zorba, S.; Coward, D.; Drolshagen, E.; Drolshagen, G.; Hernandez, O.; Jehin, E.; Jobin, M.; King, A.; Nitschelm, C.; Ott, T.; Sanchez-Lavega, A.; Toni, A.; Abraham, P.; Affaticati, F.; Albani, M.; Andreis, A.; Andrieu, T.; Anghel, S.; Antaluca, E.; Antier, K.; Appere, T.; Armand, A.; Ascione, G.; Audureau, Y.; Auxepaules, G.; Avoscan, T.; Baba Aissa, D.; Bacci, P.; Badescu, O.; Baldini, R.; Baldo, R.; Balestrero, A.; Baratoux, D.; Barbotin, E.; Bardy, M.; Basso, S.; Bautista, O.; Bayle, L. D.; Beck, P.; Bellitto, R.; Belluso, R.; Benna, C.; Benammi, M.; Beneteau, E.; Benkhaldoun, Z.; Bergamini, P.; Bernardi, F.; Bertaina, M. E.; Bessin, P.; Betti, L.; Bettonvil, F.; Bihel, D.; Birnbaum, C.; Blagoi, O.; Blouri, E.; Boaca, I.; Boata, R.; Bobiet, B.; Bonino, R.; Boros, K.; Bouchet, E.; Borgeot, V.; Bouchez, E.; Boust, D.; Boudon, V.; Bouman, T.; Bourget, P.; Brandenburg, S.; Bramond, Ph.; Braun, E.; Bussi, A.; Cacault, P.; Caillier, B.; Calegaro, A.; Camargo, J.; Caminade, S.; Campana, A. P. C.; Campbell-Burns, P.; Canal-Domingo, R.; Carell, O.; Carreau, S.; Cascone, E.; Cattaneo, C.; Cauhape, P.; Cavier, P.; Celestin, S.; Cellino, A.; Champenois, M.; Chennaoui Aoudjehane, H.; Chevrier, S.; Cholvy, P.; Chomier, L.; Christou, A.; Cricchio, D.; Coadou, P.; Cocaign, J. Y.; Cochard, F.; Cointin, S.; Colombi, E.; Colque Saavedra, J. P.; Corp, L.; Costa, M.; Costard, F.; Cottier, M.; Cournoyer, P.; Coustal, E.; Cremonese, G.; Cristea, O.; Cuzon, J. C.; D'Agostino, G.; Daiffallah, K.; Danescu, C.; Dardon, A.; Dasse, T.; Davadan, C.; Debs, V.; Defaix, J. P.; Deleflie, F.; D'Elia, M.; De Luca, P.; De Maria, P.; Deverchere, P.; Devillepoix, H.; Dias, A.; Di Dato, A.; Di Luca, R.; Dominici, F. M.; Drouard, A.; Dumont, J. L.; Dupouy, P.; Duvignac, L.; Egal, A.; Erasmus, N.; Esseiva, N.; Ebel, A.; Eisengarten, B.; Federici, F.; Feral, S.; Ferrant, G.; Ferreol, E.; Finitzer, P.; Foucault, A.; Francois, P.; Frincu, M.; Froger, J. L.; Gaborit, F.; Gagliarducci, V.; Galard, J.; Gardavot, A.; Garmier, M.; Garnung, M.; Gautier, B.; Gendre, B.; Gerard, D.; Gerardi, A.; Godet, J. P.; Grandchamps, A.; Grouiez, B.; Groult, S.; Guidetti, D.; Giuli, G.; Hello, Y.; Henry, X.; Herbreteau, G.; Herpin, M.; Hewins, P.; Hillairet, J. J.; Horak, J.; Hueso, R.; Huet, E.; Huet, S.; Hyaume, F.; Interrante, G.; Isselin, Y.; Jeangeorges, Y.; Janeux, P.; Jeanneret, P.; Jobse, K.; Jouin, S.; Jouvard, J. M.; Joy, K.; Julien, J. F.; Kacerek, R.; Kaire, M.; Kempf, M.; Koschny, D.; Krier, C.; Kwon, M. K.; Lacassagne, L.; Lachat, D.; Lagain, A.; Laisne, E.; Lanchares, V.; Laskar, J.; Lazzarin, M.; Leblanc, M.; Lebreton, J. P.; Lecomte, J.; Le Du, P.; Lelong, F.; Lera, S.; Leoni, J. F.; Le-Pichon, A.; Le-Poupon, P.; Leroy, A.; Leto, G.; Levansuu, A.; Lewin, E.; Lienard, A.; Licchelli, D.; Locatelli, H.; Loehle, S.; Loizeau, D.; Luciani, L.; Maignan, M.; Manca, F.; Mancuso, S.; Mandon, E.; Mangold, N.; Mannucci, F.; Maquet, L.; Marant, D.; Marchal, Y.; Marin, J. L.; Martin-Brisset, J. C.; Martin, D.; Mathieu, D.; Maury, A.; Mespoulet, N.; Meyer, F.; Meyer, J. Y.; Meza, E.; Moggi Cecchi, V.; Moiroud, J. J.; Millan, M.; Montesarchio, M.; Misiano, A.; Molinari, E.; Molau, S.; Monari, J.; Monflier, B.; Monkos, A.; Montemaggi, M.; Monti, G.; Moreau, R.; Morin, J.; Mourgues, R.; Mousis, O.; Nablanc, C.; Nastasi, A.; Niacsu, L.; Notez, P.; Ory, M.; Pace, E.; Paganelli, M. A.; Pagola, A.; Pajuelo, M.; Palacian, J. F.; Pallier, G.; Paraschiv, P.; Pardini, R.; Pavone, M.; Pavy, G.; Payen, G.; Pegoraro, A.; Pena-Asensio, E.; Perez, L.; Perez-Hoyos, S.; Perlerin, V.; Peyrot, A.; Peth, F.; Pic, V.; Pietronave, S.; Pilger, C.; Piquel, M.; Pisanu, T.; Poppe, M.; Portois, L.; Prezeau, J. F.; Pugno, N.; Quantin, C.; Quitte, G.; Rambaux, N.; Ravier, E.; Repetti, U.; Ribas, S.; Richard, C.; Richard, D.; Rigoni, M.; Rivet, J. P.; Rizzi, N.; Rochain, S.; Rojas, J. F.; Romeo, M.; Rotaru, M.; Rotger, M.; Rougier, P.; Rousselot, P.; Rousset, J.; Rousseu, D.; Rubiera, O.; Rudawska, R.; Rudelle, J.; Ruguet, J. P.; Russo, P.; Sales, S.; Sauzereau, O.; Salvati, F.; Schieffer, M.; Schreiner, D.; Scribano, Y.; Selvestrel, D.; Serra, R.; Shengold, L.; Shuttleworth, A.; Smareglia, R.; Sohy, S.; Soldi, M.; Stanga, R.; Steinhausser, A.; Strafella, F.; Sylla Mbaye, S.; Smedley, A. R. D.; Tagger, M.; Tanga, P.; Taricco, C.; Teng, J. P.; Tercu, J. O.; Thizy, O.; Thomas, J. P.; Tombelli, M.; Trangosi, R.; Tregon, B.; Trivero, P.; Tukkers, A.; Turcu, V.; Umbriaco, G.; Unda-Sanzana, E.; Vairetti, R.; Valenzuela, M.; Valente, G.; Varennes, G.; Vauclair, S.; Vergne, J.; Verlinden, M.; Vidal-Alaiz, M.; Vieira-Martins, R.; Viel, A.; Vintdevara, D. C.; Vinogradoff, V.; Volpini, P.; Wendling, M.; Wilhelm, P.; Wohlgemuth, K.; Yanguas, P.; Zagarella, R.; Zollo, A.Context. Until recently, camera networks designed for monitoring fireballs worldwide were not fully automated, implying that in case of a meteorite fall, the recovery campaign was rarely immediate. This was an important limiting factor as the most fragile - hence precious - meteorites must be recovered rapidly to avoid their alteration.
- ItemPLUTO's ATMOSPHERE FROM STELLAR OCCULTATIONS IN 2012 AND 2013(2015) Dias-Oliveira, A.; Sicardy, B.; Lellouch, E.; Vieira-Martins, R.; Assafin, M.; Camargo, J. I. B.; Braga-Ribas, F.; Gomes-Junior, A. R.; Benedetti-Rossi, G.; Colas, F.; Decock, A.; Doressoundiram, A.; Dumas, C.; Emilio, M.; Fabrega Polleri, J.; Gil-Hutton, R.; Gillon, M.; Girard, J. H.; Hau, G. K. T.; Ivanov, V. D.; Jehin, E.; Lecacheux, J.; Leiva, R.; Lopez-Sisterna, C.; Mancini, L.; Manfroid, J.; Maury, A.; Meza, E.; Morales, N.; Nagy, L.; Opitom, C.; Ortiz, J. L.; Pollock, J.; Roques, F.; Snodgrass, C.; Soulier, J. F.; Thirouin, A.; Vanzi, L.; Widemann, T.; Reichart, D. E.; LaCluyze, A. P.; Haislip, J. B.; Ivarsen, K. M.; Dominik, M.; Jorgensen, U.; Skottfelt, J.We analyze two multi-chord stellar occultations by Pluto that were observed on 2012 July 18th and 2013 May 4th, and respectively monitored from five and six sites. They provide a total of fifteen light curves, 12 of which were used for a simultaneous fit that uses a unique temperature profile, assuming a clear (no haze) and pure N-2 atmosphere, but allowing for a possible pressure variation between the two dates. We find a solution that satisfactorily fits (i.e., within the noise level) all of the 12 light curves, providing atmospheric constraints between similar to 1190 km (pressure similar to 11 mu bar) and similar to 1450 km (pressure similar to 0.1 mu bar) from Pluto's center. Our main results are: (1) the best-fitting temperature profile shows a stratosphere with a strong positive gradient between 1190 km (at 36 K, 11 mu bar) and r = 1215 km (6.0 mu bar), where a temperature maximum of 110 K is reached; above it is a mesosphere with a negative thermal gradient of -0.2 K km(-1) up to similar to 1390 km (0.25 mu bar), where the mesosphere connects itself to a more isothermal upper branch around 81 K; (2) the pressure shows a small (6%) but significant increase (6 sigma level) between the two dates; (3) without a troposphere, Pluto's radius is found to be R-P = 1190 +/- 5 km. Allowing for a troposphere, R-P is constrained to lie between 1168 and 1195 km; and (4) the currently measured CO abundance is too small to explain the mesospheric negative thermal gradient. Cooling by HCN is possible, but only if this species is largely saturated. Alternative explanations like zonal winds or vertical compositional variations of the atmosphere are unable to explain the observed mesospheric negative thermal gradient.
- ItemRefined physical parameters for Chariklo's body and rings from stellar occultations observed between 2013 and 2020(2021) Morgado, B. E.; Sicardy, B.; Braga-Ribas, F.; Desmars, J.; Gomes-Junior, A. R.; Berard, D.; Leiva, R.; Ortiz, J. L.; Vieira-Martins, R.; Benedetti-Rossi, G.; Santos-Sanz, P.; Camargo, J. I. B.; Duffard, R.; Rommel, F. L.; Assafin, M.; Boufleur, R. C.; Colas, F.; Kretlow, M.; Beisker, W.; Sfair, R.; Snodgrass, C.; Morales, N.; Fernandez-Valenzuela, E.; Amaral, L. S.; Amarante, A.; Artola, R. A.; Backes, M.; Bath, K. -L.; Bouley, S.; Buie, M. W.; Cacella, P.; Colazo, C. A.; Colque, J. P.; Dauvergne, J. -L.; Dominik, M.; Emilio, M.; Erickson, C.; Evans, R.; Fabrega-Polleri, J.; Garcia-Lambas, D.; Giacchini, B. L.; Hanna, W.; Herald, D.; Hesler, G.; Hinse, T. C.; Jacques, C.; Jehin, E.; Jorgensen, U. G.; Kerr, S.; Kouprianov, V.; Levine, S. E.; Linder, T.; Maley, P. D.; Machado, D. I.; Maquet, L.; Maury, A.; Melia, R.; Meza, E.; Mondon, B.; Moura, T.; Newman, J.; Payet, T.; Pereira, C. L.; Pollock, J.; Poltronieri, R. C.; Quispe-Huaynasi, F.; Reichart, D.; de Santana, T.; Schneiter, E. M.; Sieyra, M. V.; Skottfelt, J.; Soulier, J. F.; Starck, M.; Thierry, P.; Torres, P. J.; Trabuco, L. L.; Unda-Sanzana, E.; Yamashita, T. A. R.; Winter, O. C.; Zapata, A.; Zuluaga, C. A.Context. The Centaur (10199) Chariklo has the first ring system discovered around a small object. It was first observed using stellar occultation in 2013. Stellar occultations allow sizes and shapes to be determined with kilometre accuracy, and provide the characteristics of the occulting object and its vicinity.
- ItemSize and Shape of Chariklo from Multi-epoch Stellar Occultations(2017) Leiva, R.; Sicardy, B.; Camargo, J. I. B.; Ortiz, J. -L.; Desmars, J.; Berard, D.; Lellouch, E.; Meza, E.; Kervella, P.; Snodgrass, C.; Duffard, R.; Morales, N.; Gomes-Junior, A. R.; Benedetti-Rossi, G.; Vieira-Martins, R.; Braga-Ribas, F.; Assafin, M.; Morgado, B. E.; Colas, F.; De Witt, C.; Sickafoose, A. A.; Breytenbach, H.; Dauvergne, J. -L.; Schoenau, P.; Maquet, L.; Bath, K. -L.; Bode, H. -J.; Cool, A.; Lade, B.; Kerr, S.; Herald, D.We use data from five stellar occultations observed between 2013 and 2016 to constrain Chariklo's size and shape, and the ring reflectivity. We consider four possible models for Chariklo (sphere, Maclaurin spheroid, triaxial ellipsoid, and Jacobi ellipsoid), and we use a Bayesian approach to estimate the corresponding parameters. The spherical model has a radius R = 129 +/- 3 km. The Maclaurin model has equatorial and polar radii a = b = 143(-6)(13) km and = c 96(-4)(+14) km respectively, with density 970(-180)(+300) kg m(-3). The ellipsoidal model has semiaxes = a 148(-4)(+6) km and c = 102(-8)(+10) km Finally, the Jacobi model has semiaxes a = 157 +/- 4 km, b = 139 +/- 4 km, and c = 86 +/- 1 km, and density 796(-4)(+2) kg m(-3) Depending on the model, we obtain topographic features of 6-11 km, typical of Saturn icy satellites with similar size and density. We constrain Chariklo's geometric albedo between 3.1% (sphere) and 4.9% (ellipsoid), while the ring I/F reflectivity is less constrained between 0.6% (Jacobi) and 8.9% (sphere). The ellipsoid model explains both the optical light curve and the long-term photometry variation of the system, giving a plausible value for the geometric albedo of the ring particles of 10%-15%. The derived mass of Chariklo of 6-8 x 10(18) kg places the rings close to 3:1 resonance between the ring mean motion and Chariklo's rotation period.