Browsing by Author "Cock, J. Mark"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemDevelopment of PCR-Based Markers to Determine the Sex of Kelps(2015) Lipinska, Agnieszka P.; Ahmed, Sophia; Peters, Akira F.; Faugeron, Sylvain Wielfrid; Cock, J. Mark; Coelho, Susana M.
- ItemGenetic diversity of Ectocarpus (Ectocarpales, Phaeophyceae) in Peru and northern Chile, the area of origin of the genome-sequenced strain(2010) Peters, Akira F.; Mann, Aaron D.; Cordova, Cesar A.; Brodie, Juliet; Correa, Juan A.; Schroeder, Declan C.; Cock, J. MarkP>The origin of the Ectocarpus strain used for genome sequencing (the 'genome strain') was Peru, where no Ectocarpus had been reported previously. To study the genetic diversity in the region and to increase the number of individuals from this area available for genetic experiments, 119 new Ectocarpus strains were isolated from eight localities along the 3000 km of coastline from central Peru to central Chile.
- ItemPan genome of the phytoplankton Emiliania underpins its global distribution(2013) Read, Betsy A.; Kegel, Jessica; Klute, Mary J.; Kuo, Alan; Lefebvre, Stephane C.; Maumus, Florian; Mayer, Christoph; Miller, John; Monier, Adam; Salamov, Asaf; Young, Jeremy; Aguilar, Maria; Claverie, Jean-Michel; Frickenhaus, Stephan; Gonzalez, Karina; Herman, Emily K.; Lin, Yao-Cheng; Napier, Johnathan; Ogata, Hiroyuki; Sarno, Analissa F.; Shmutz, Jeremy; Schroeder, Declan; de Vargas, Colomban; Verret, Frederic; von Dassow, Peter; Valentin, Klaus; Van de Peer, Yves; Wheeler, Glen; Dacks, Joel B.; Delwiche, Charles F.; Dyhrman, Sonya T.; Gloeckner, Gernot; John, Uwe; Richards, Thomas; Worden, Alexandra Z.; Zhang, Xiaoyu; Grigoriev, Igor V.; Allen, Andrew E.; Bidle, Kay; Borodovsky, M.; Bowler, C.; Brownlee, Colin; Cock, J. Mark; Elias, Marek; Gladyshev, Vadim N.; Groth, Marco; Guda, Chittibabu; Hadaegh, Ahmad; Iglesias-Rodriguez, Maria Debora; Jenkins, J.; Jones, Bethan M.; Lawson, Tracy; Leese, Florian; Lindquist, Erika; Lobanov, Alexei; Lomsadze, Alexandre; Malik, Shehre-Banoo; Marsh, Mary E.; Mackinder, Luke; Mock, Thomas; Mueller-Roeber, Bernd; Pagarete, Antonio; Parker, Micaela; Probert, Ian; Quesneville, Hadi; Raines, Christine; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Richier, Sophie; Rokitta, Sebastian; Shiraiwa, Yoshihiro; Soanes, Darren M.; van der Giezen, Mark; Wahlund, Thomas M.; Williams, Bryony; Wilson, Willie; Wolfe, Gordon; Wurch, Louie L.Coccolithophores have influenced the global climate for over 200 million years(1). These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems(2). They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space(3). Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean(4). Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.
- ItemThe Ectocarpus genome and the independent evolution of multicellularity in brown algae(2010) Cock, J. Mark; Sterck, Lieven; Rouze, Pierre; Scornet, Delphine; Allen, Andrew E.; Amoutzias, Grigoris; Anthouard, Veronique; Artiguenave, Francois; Aury, Jean-Marc; Badger, Jonathan H.; Beszteri, Bank; Billiau, Kenny; Bonnet, Eric; Bothwell, John H.; Bowler, Chris; Boyen, Catherine; Brownlee, Colin; Carrano, Carl J.; Charrier, Benedicte; Cho, Ga Youn; Coelho, Susana M.; Collen, Jonas; Corre, Erwan; Da Silva, Corinne; Delage, Ludovic; Delaroque, Nicolas; Dittami, Simon M.; Doulbeau, Sylvie; Elias, Marek; Farnham, Garry; Gachon, Claire M. M.; Gschloessl, Bernhard; Heesch, Svenja; Jabbari, Kamel; Jubin, Claire; Kawai, Hiroshi; Kimura, Kei; Kloareg, Bernard; Kuepper, Frithjof C.; Lang, Daniel; Le Bail, Aude; Leblanc, Catherine; Lerouge, Patrice; Lohr, Martin; Lopez, Pascal J.; Martens, Cindy; Maumus, Florian; Michel, Gurvan; Miranda-Saavedra, Diego; Morales, Julia; Moreau, Herve; Motomura, Taizo; Nagasato, Chikako; Napoli, Carolyn A.; Nelson, David R.; Nyvall-Collen, Pi; Peters, Akira F.; Pommier, Cyril; Potin, Philippe; Poulain, Julie; Quesneville, Hadi; Read, Betsy; Rensing, Stefan A.; Ritter, Andres; Rousvoal, Sylvie; Samanta, Manoj; Samson, Gaelle; Schroeder, Declan C.; Segurens, Beatrice; Strittmatter, Martina; Tonon, Thierry; Tregear, James W.; Valentin, Klaus; von Dassow, Peter; Yamagishi, Takahiro; Van de Peer, Yves; Wincker, PatrickBrown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related(1). These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae(2-5), closely related to the kelps(6,7) (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic(2) approaches to explore these and other(4,5) aspects of brown algal biology further.