Browsing by Author "Chornock, R."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemA NEW POPULATION OF ULTRA-LONG DURATION GAMMA-RAY BURSTS(IOP PUBLISHING LTD, 2014) Levan, A. J.; Tanvir, N. R.; Starling, R. L. C.; Wiersema, K.; Page, K. L.; Perley, D. A.; Schulze, S.; Wynn, G. A.; Chornock, R.; Hjorth, J.; Cenko, S. B.; Fruchter, A. S.; O'Brien, P. T.; Brown, G. C.; Tunnicliffe, R. L.; Malesani, D.; Jakobsson, P.; Watson, D.; Berger, E.; Bersier, D.; Cobb, B. E.; Covino, S.; Cucchiara, A.; de Ugarte Postigo, A.; Fox, D. B.; Gal Yam, A.; Goldoni, P.; Gorosabel, J.; Kaper, L.; Kruehler, T.; Karjalainen, R.; Osborne, J. P.; Pian, E.; Sanchez Ramirez, R.; Schmidt, B.; Skillen, I.; Tagliaferri, G.; Thoene, C.; Vaduvescu, O.; Wijers, R. A. M. J.; Zauderer, B. A.We present comprehensive multiwavelength observations of three gamma-ray bursts (GRBs) with durations of several thousand seconds. We demonstrate that these events are extragalactic transients; in particular, we resolve the long-standing conundrum of the distance of GRB 101225A (the "Christmas-day burst"), finding it to have a redshift z = 0.847 and showing that two apparently similar events (GRB 111209A and GRB 121027A) lie at z = 0.677 and z = 1.773, respectively. The systems show extremely unusual X-ray and optical light curves, very different from classical GRBs, with long-lasting, highly variable X-ray emission and optical light curves that exhibit little correlation with the behavior seen in the X-ray. Their host galaxies are faint, compact, and highly star-forming dwarf galaxies, typical of "blue compact galaxies." We propose that these bursts are the prototypes of a hitherto largely unrecognized population of ultra-long GRBs, which while observationally difficult to detect may be astrophysically relatively common. The long durations may naturally be explained by the engine-driven explosions of stars of much larger radii than normally considered for GRB progenitors, which are thought to have compact Wolf-Rayet progenitor stars. However, we cannot unambiguously identify supernova signatures within their light curves or spectra. We also consider the alternative possibility that they arise from the tidal disruption of stars by massive black holes and conclude that the associated timescales are only consistent with the disruption of compact stars (e. g., white dwarfs) by black holes of relatively low mass (<10(5) M-circle dot).
- ItemFinal Moments. II. Observational Properties and Physical Modeling of Circumstellar-material-interacting Type II Supernovae(2024) Jacobson-Galan, W. V.; Dessart, L.; Davis, K. W.; Kilpatrick, C. D.; Margutti, R.; Foley, R. J.; Chornock, R.; Terreran, G.; Hiramatsu, D.; Newsome, M.; Padilla Gonzalez, E.; Pellegrino, C.; Howell, D. A.; Filippenko, A. V.; Anderson, J. P.; Angus, C. R.; Auchettl, K.; Bostroem, K. A.; Brink, T. G.; Cartier, R.; Coulter, D. A.; de Boer, T.; Drout, M. R.; Earl, N.; Ertini, K.; Farah, J. R.; Farias, D.; Gall, C.; Gao, H.; Gerlach, M. A.; Guo, F.; Haynie, A.; Hosseinzadeh, G.; Ibik, A. L.; Jha, S. W.; Jones, D. O.; Langeroodi, D.; Lebaron, N.; Magnier, E. A.; Piro, A. L.; Raimundo, S. I.; Rest, A.; Rest, S.; Rich, R. Michael; Rojas-Bravo, C.; Sears, H.; Taggart, K.; Villar, V. A.; Wainscoat, R. J.; Wang, X-f.; Wasserman, A. R.; Yan, S.; Yang, Y.; Zhang, J.; Zheng, W.We present ultraviolet/optical/near-infrared observations and modeling of Type II supernovae (SNe II) whose early time (delta(t) < 2 days) spectra show transient, narrow emission lines from shock ionization of confined (r < 10(15) cm) circumstellar material (CSM). The observed electron-scattering broadened line profiles (i.e., IIn-like) of H i, He i/ii, C iv, and N iii/iv/v from the CSM persist on a characteristic timescale (t(IIn)) that marks a transition to a lower-density CSM and the emergence of Doppler-broadened features from the fast-moving SN ejecta. Our sample, the largest to date, consists of 39 SNe with early time IIn-like features in addition to 35 "comparison" SNe with no evidence of early time IIn-like features, all with ultraviolet observations. The total sample includes 50 unpublished objects with a total of 474 previously unpublished spectra and 50 multiband light curves, collected primarily through the Young Supernova Experiment and Global Supernova Project collaborations. For all sample objects, we find a significant correlation between peak ultraviolet brightness and both t(II)n and the rise time, as well as evidence for enhanced peak luminosities in SNe II with IIn-like features. We quantify mass-loss rates and CSM density for the sample through the matching of peak multiband absolute magnitudes, rise times, t(IIn), and optical SN spectra with a grid of radiation hydrodynamics and non-local thermodynamic equilibrium radiative-transfer simulations. For our grid of models, all with the same underlying explosion, there is a trend between the duration of the electron-scattering broadened line profiles and inferred mass-loss rate: t(IIn) approximate to 3.8[M/ (0.01 M-circle dot yr(-1))] days.
- ItemLight echoes reveal an unexpectedly cool η Carinae during its nineteenth-century Great Eruption(2012) Rest, A.; Prieto, J. L.; Walborn, N. R.; Smith, N.; Bianco, F. B.; Chornock, R.; Welch, D. L.; Howell, D. A.; Huber, M. E.; Foley, R. J.; Fong, W.; Sinnott, B.; Bond, H. E.; Smith, R. C.; Toledo, I.; Minniti, D.; Mandel, K.eta Carinae is one of the most massive binary stars in the Milky Way(1,2). It became the second-brightest star in our sky during its mid-nineteenth-century 'Great Eruption', but then faded from view (with only naked-eye estimates of brightness(3,4)). Its eruption is unique in that it exceeded the Eddington luminosity limit for ten years. Because it is only 2.3 kiloparsecs away, spatially resolved studies of the nebula have constrained the ejected mass and velocity, indicating that during its nineteenth-century eruption, eta Car ejected more than ten solar masses in an event that released ten per cent of the energy of a typical core-collapse supernova(5,6), without destroying the star. Here we report observations of light echoes of eta Carinae from the 1838-1858 Great Eruption. Spectra of these light echoes show only absorption lines, which are blueshifted by -210 km s(-1), in good agreement with predicted expansion speeds(6). The light-echo spectra correlate best with those of G2-to-G5 supergiants, which have effective temperatures of around 5,000 kelvin. In contrast to the class of extragalactic outbursts assumed to be analogues of the Great Eruption of eta Carinae(7-12), the effective temperature of its outburst is significantly lower than that allowed by standard opaque wind models(13). This indicates that other physical mechanisms such as an energetic blast wave may have triggered and influenced the eruption.
