Browsing by Author "Chary, R."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemGOODS-ALMA 2.0: Source catalog, number counts, and prevailing compact sizes in 1.1 mm galaxies(2022) Gómez-Guijarro, C.; Elbaz, D.; Xiao, M.; Béthermin, M.; Franco, M.; Magnelli, B.; Daddi, E.; Dickinson, M.; Demarco, R.; Inami, H.; Rujopakarn, W.; Magdis, G. E.; Shu, X.; Chary, R.; Zhou, L.; Alexander, D. M.; Bournaud, F.; Ciesla, L.; Ferguson, H. C.; Finkelstein, S. L.; Giavalisco, M.; Iono, D.; Juneau, S.; Kartaltepe, J. S.; Lagache, G.; Le Floc'h, E.; Leiton, R.; Lin, L.; Motohara, K.; Mullaney, J.; Okumura, K.; Pannella, M.; Papovich, C.; Pope, A.; Sargent, M. T.; Silverman, J. D.; Treister, E.; Wang, T.Submillimeter/millimeter observations of dusty star-forming galaxies with the Atacama Large Millimeter/submillimeter Array (ALMA) have shown that dust continuum emission generally occurs in compact regions smaller than the stellar distribution. However, it remains to be understood how systematic these findings are. Studies often lack homogeneity in the sample selection, target discontinuous areas with inhomogeneous sensitivities, and suffer from modest uv coverage coming from single array configurations. GOODS-ALMA is a 1.1 mm galaxy survey over a continuous area of 72.42 arcmin(2) at a homogeneous sensitivity. In this version 2.0, we present a new low resolution dataset and its combination with the previous high resolution dataset from the survey, improving the uv coverage and sensitivity reaching an average of sigma = 68.4 mu Jy beam(-1). A total of 88 galaxies are detected in a blind search (compared to 35 in the high resolution dataset alone), 50% at S/N-peak >= 5 and 50% at 3.5 <= S/N-peak <= 5 aided by priors. Among them, 13 out of the 88 are optically dark or faint sources (H- or K-band dropouts). The sample dust continuum sizes at 1.1 mm are generally compact, with a median effective radius of R-e = 0 ''.10 +/- 0 ''.5 (a physical size of R-e = 0.73 +/- 0.29 kpc at the redshift of each source). Dust continuum sizes evolve with redshift and stellar mass resembling the trends of the stellar sizes measured at optical wavelengths, albeit a lower normalization compared to those of late-type galaxies. We conclude that for sources with flux densities S-1.1mm > 1 mJy, compact dust continuum emission at 1.1 mm prevails, and sizes as extended as typical star-forming stellar disks are rare. The S-1.1mm < 1 mJy sources appear slightly more extended at 1.1 mm, although they are still generally compact below the sizes of typical star-forming stellar disks.
- ItemGOODS-ALMA 2.0: Starbursts in the main sequence reveal compact star formation regulating galaxy evolution prequenching(2022) Gomez-Guijarro, C.; Elbaz, D.; Xiao, M.; Kokorev, V., I; Magdis, G. E.; Magnelli, B.; Daddi, E.; Valentino, F.; Sargent, M. T.; Dickinson, M.; Bethermin, M.; Franco, M.; Pope, A.; Kalita, B. S.; Ciesla, L.; Demarco, R.; Inami, H.; Rujopakarn, W.; Shu, X.; Wang, T.; Zhou, L.; Alexander, D. M.; Bournaud, F.; Chary, R.; Ferguson, H. C.; Finkelstein, S. L.; Giavalisco, M.; Iono, D.; Juneau, S.; Kartaltepe, J. S.; Lagache, G.; Le Floc'h, E.; Leiton, R.; Leroy, L.; Lin, L.; Motohara, K.; Mullaney, J.; Okumura, K.; Pannella, M.; Papovich, C.; Treister, E.Compact star formation appears to be generally common in dusty star-forming galaxies (SFGs). However, its role in the framework set by the scaling relations in galaxy evolution remains to be understood. In this work we follow up on the galaxy sample from the GOODS-ALMA 2.0 survey, an ALMA blind survey at 1.1 mm covering a continuous area of 72.42 arcmin(2) using two array configurations. We derived physical properties, such as star formation rates, gas fractions, depletion timescales, and dust temperatures for the galaxy sample built from the survey. There exists a subset of galaxies that exhibit starburst-like short depletion timescales, but they are located within the scatter of the so-called main sequence of SFGs. These are dubbed starbursts in the main sequence and display the most compact star formation and they are characterized by the shortest depletion timescales, lowest gas fractions, and highest dust temperatures of the galaxy sample, compared to typical SFGs at the same stellar mass and redshift. They are also very massive, accounting for similar to 60% of the most massive galaxies in the sample (log(M-*/M-circle dot) > 11.0). We find trends between the areas of the ongoing star formation regions and the derived physical properties for the sample, unveiling the role of compact star formation as a physical driver of these properties. Starbursts in the main sequence appear to be the extreme cases of these trends. We discuss possible scenarios of galaxy evolution to explain the results drawn from our galaxy sample. Our findings suggest that the star formation rate is sustained in SFGs by gas and star formation compression, keeping them within the main sequence even when their gas fractions are low and they are presumably on the way to quiescence.
- ItemThe swift gamma-ray burst host galaxy legacy survey. I. Sample selection and redshift distribution.(2016) Perley, Daniel A.; Kim, Sam; Krühler, Thomas; Schulze, Steve.; Ugarte Postigo, A. de; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.
- ItemTHE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD(IOP PUBLISHING LTD, 2016) Perley, D. A.; Tanvir, N. R.; Hjorth, J.; Laskar, T.; Berger, E.; Chary, R.; de Ugarte Postigo, A.; Fynbo, J. P. U.; Kruhler, T.; Levan, A. J.; Michalowski, M. J.; Schulze, S.We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z similar to 0.5 and z similar to 1.5, but little variation between z similar to 1.5 and z similar to 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high. redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass-metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported "excess" in the GRB rate beyond z greater than or similar to 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.