Browsing by Author "Charmandaris, Vassilis"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemA Herschel Space Observatory Spectral Line Survey of Local Luminous Infrared Galaxies from 194 to 671 Microns(IOP PUBLISHING LTD, 2017) Lu, Nanyao; Zhao, Yinghe; Diaz Santos, Tanio; Kevin Xu, C.; Gao, Yu; Armus, Lee; Isaak, Kate G.; Mazzarella, Joseph M.; van der Werf, Paul P.; Appleton, Philip N.; Charmandaris, Vassilis; Evans, Aaron S.; Howell, Justin; Iwasawa, Kazushi; Leech, Jamie; Lord, Steven; Petric, Andreea O.; Privon, George C.; Sanders, David B.; Schulz, Bernhard; Surace, Jason A.We describe a Herschel Space Observatory 194-671 mu m spectroscopic survey of a sample of 121 local luminous infrared galaxies and report the fluxes of the CO J to J-1 rotational transitions for 4 <= J <= 13, the [N II] 205 mu m line, the [C I] lines at 609 and 370 mu m, as well as additional and usually fainter lines. The CO spectral line energy distributions (SLEDs) presented here are consistent with our earlier work, which was based on a smaller sample, that calls for two distinct molecular gas components in general: (i) a cold component, which emits CO lines primarily at J less than or similar to 4 and likely represents the same gas phase traced by CO (1-0), and (ii) a warm component, which dominates over the mid-J regime (4 < J less than or similar to 10) and is intimately related to current star formation. We present evidence that the CO line emission associated with an active galactic nucleus is significant only at J > 10. The flux ratios of the two [C I] lines imply modest excitation temperatures of 15-30 K; the [C I] 370 mu m line scales more linearly in flux with CO (4-3) than with CO (7-6). These findings suggest that the [C I] emission is predominantly associated with the gas component defined in (i) above. Our analysis of the stacked spectra in different far-infrared (FIR) color bins reveals an evolution of the SLED of the rotational transitions of H2O vapor as a function of the FIR color in a direction consistent with infrared photon pumping.
- ItemALMA [N II] 205 mu m Imaging Spectroscopy of the Interacting Galaxy System BRI 1202-0725 at Redshift 4.7(IOP PUBLISHING LTD, 2017) Lu, Nanyao; Zhao, Yinghe; Diaz Santos, Tanio; Kevin Xu, C.; Charmandaris, Vassilis; Gao, Yu; van der Werf, Paul P.; Privon, George C.; Inami, Hanae; Rigopoulou, Dimitra; Sanders, David B.; Zhu, LeiWe present the results from Atacama Large Millimeter/submillimeter Array imaging in the [N II] 205 mu m fine-structure line (hereafter [N II]) and the underlying continuum of BRI 1202-0725, an interacting galaxy system at z = 4.7, consisting of a quasi-stellar object (QSO), a submillimeter galaxy (SMG), and two Ly alpha emitters, all within similar to 25 kpc of the QSO. We detect the QSO and SMG in both [N II] and continuum. At the similar to 1 '' (or 6.6 kpc) resolution, both the QSO and SMG are resolved in [N II], with the de-convolved major axes of similar to 9 and similar to 14 kpc, respectively. In contrast, their continuum emissions are much more compact and unresolved even at an enhanced resolution of similar to 0 ''.7. The ratio of the [N II] flux to the existing CO(7-6) flux is used to constrain the dust temperature (T-dust) for a more accurate determination of the FIR luminosity L-FIR. Our best estimated T-dust equals 43 (+/- 2) K for both galaxies (assuming an emissivity index beta = 1.8). The resulting LCO(7-6)/LFIR ratios are statistically consistent with that of local luminous infrared galaxies, confirming that LCO(7-6) traces the star formation (SF) rate (SFR) in these galaxies. We estimate that the ongoing SF of the QSO (SMG) has an SFR of 5.1 (6.9) x 10(3) M-circle dot yr(-1) (+/- 30%) assuming Chabrier initial mass function, takes place within a diameter (at half maximum) of 1.3 (1.5) kpc, and will consume the existing 5 (5) x 10(11) M-circle dot of molecular gas in 10 (7) x 10(7) years.
- ItemALMA Observation of NGC 5135: The Circumnuclear CO (6-5) and Dust Continuum Emission at 45 pc Resolution(2018) Cao, Tianwen; Lu, Nanyao; Xu, C. Kevin; Zhao, Yinghe; Madhav Kalari, Venu; Gao, Yu; Charmandaris, Vassilis; Diaz Santos, Tanio; Van der Werf, Paul; Cao, Chen; Wu, Hong; Inami, Hanae; Evans, Aaron S.
- ItemCO (7-6), [C I] 370 mu m, and [N II] 205 mu m Line Emission of the QSO BRI1335-0417 at Redshift 4.407(2018) Lu, Nanyao; Cao, Tianwen; Diaz-Santos, Tanio; Zhao, Yinghe; Privon, George C.; Cheng, Cheng; Gao, Yu; Xu, C. Kevin; Charmandaris, Vassilis; Rigopoulou, Dimitra; Van der Werf, Paul P.; Huang, Jiasheng; Wang, Zhong; Evans, Aaron S.; Sanders, David B.
- ItemThe Arp 240 Galaxy Merger: A Detailed Look at the Molecular Kennicutt-Schmidt Star Formation Law on Subkiloparsec Scales(IOP Publishing Ltd, 2025) Saravia, Alejandro; Rodas Quito, Eduardo; Barcos Muñoz, Loreto; Evans, Aaron; Kunneriath, Devaky; Privon, George; Song, Yiqing; Yoon, Ilsang; Emig, Kimberly L.; Sánchez Garcia, María; Linden, Sean; Green, Kara Noelle; Johnstone, Makoto; Nagarajan Swenson, Jaya; Meza, Gabriela A.; Momjian, Emmanuel; Armus, Lee; Charmandaris, Vassilis; Díaz Santos, Tanio; Treister, EzequielThe molecular Kennicutt-Schmidt Law has been key for understanding star formation (SF) in galaxies across allredshifts. However, recent subkiloparsec observations of nearby galaxies reveal deviations from the nearly unityslop e(N) obtained with disk-averaged measurements. We study SF and molecular gas (MG) distribution in theearly-stage luminous infrared galaxy merger Arp 240(NGC 5257-8). Using Very Large Array radio continuum (RC) and Atacama Large Millimeter/submillimeter Array CO(2-1)observations at 500 pc scale, with a uniformgrid analysis, we estimate SF rates and MG surface densities (Sigma(SFR) and H-2, respectively). In Arp 240,Nissublinear at 0.52 +/- 0.17. For NGC 5257 and NGC 5258,Nis 0.52 +/- 0.16 and 0.75 +/- 0.15, respectively. Weidentify two SF regimes: high surface brightness (HSB) regions in RC with N similar to 1, and low surface brightness (LSB) regions with shallow N (ranging 0.15 +/- 0.09-0.48 +/- 0.04). Median CO(2-1) linewidth and MG turbulent pressure (P-turb) are 25 km s(-1) and 9 x 10(5) K cm(-3). No significant correlation was found between Sigma(SFR) and CO(2-1) linewidth. However, Sigma(SFR) correlates with P-turb, particularly in HSB regions (rho>0.60). In contrast, SF efficiency moderately anticorrelates with P-turb in LSB regions but shows no correlation in HSB regions. Additionally, we identify regions where peaks in SF and MG are decoupled, yielding a shallow N (<= 0.28 +/- 0.18). Overall, the range of N reflects distinct physical properties and distribution of both the SF and MG, which can be masked by disk-averaged measurements.