• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Chanona Perez, Jorge J."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Quality classification of corn tortillas using computer vision
    (ELSEVIER SCI LTD, 2010) Mery, Domingo; Chanona Perez, Jorge J.; Soto, Alvaro; Miguel Aguilera, Jose; Cipriano, Aldo; Velez Rivera, Nayeli; Arzate Vazquez, Israel; Gutierrez Lopez, Gustavo F.
    Computer vision is playing an increasingly important role in automated visual food inspection. However, quality control in tortilla production is still performed by human operators which may lead to misclassification due to their subjectivity and fatigue. In order to reduce the need for human operators and therefore misclassification, we developed a computer vision framework to automatically classify the quality of corn tortillas according to five hedonic sub-classes given by a sensorial panel. The proposed framework analyzed 750 corn tortillas obtained from 15 different Mexican commercial stores which were either small, medium or large in size. More than 2300 geometric and color features were extracted from 1500 images capturing both sides of the 750 tortillas. After implementing a feature selection algorithm, in which the most relevant features were selected for the classification of the five sub-classes, only 64 features were required to design a classifier based on support vector machines. Cross-validation yielded a performance of 95% in the classification of the five hedonic sub-classes. Additionally, using only 10 of the selected features and a simple statistical classifier, it was possible to determine the origin of the tortillas with a performance of 96%. We believe that the proposed framework opens up new possibilities in the field of automated visual inspection of tortillas. (c) 2010 Elsevier Ltd. All rights reserved.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback