• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cembrano Perasso, José Miguel"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Fracture growth and damage zone evolution in fault-vein systems determined through scaling relations in alteration halo-bearing hydrothermal veins
    (2024) Hofer Apostolidis, Karin Andrea; Cembrano Perasso, José Miguel; Browning, John; Pérez-Flores, Pamela; Mitchell, Thomas M.; Meredith, Philip G.; Rojas Guzmán, Flavia Jael; Tao Xu
    Understanding how fluids flow to form halo-bearing veins is essential to assess the fundamental processes involved in fracture propagation and the formation of hydrothermal ore deposits. Haloes may mimic damage zones during fracture propagation, contributing to the identification of scaling relations between halo width and fracture displacement. In this work, we examine geometry, kinematics and mineral composition of well-exposed halo-bearing fault-vein network field samples. We studied a total of 18 veins from Iron-Oxide Copper Gold (IOCG) deposits in the Chilean Atacama Desert and from the Chinese Cathaysia tectonic block. Vein length and width and halo width were measured directly at the outcrop and later under optical microscope. We established a scaling relation, over five orders of magnitude, between halo width (HW) and vein width (VW) of the form which suggests that the majority of analyzed haloes were formed as a result of crack tip process zone damage. Such ratios and scaling relationships, apart from elucidating the physical mechanisms driving halo/damage zone formation, have potential implications for a more reliable estimation of the nature and size of ore grade variations away from high-grade mineralized veins to the relatively lower grade surrounding wall rock volumes.
  • No Thumbnail Available
    Item
    Stresses Induced by Magma Chamber Pressurization Altered by Mechanical Layering and Layer Dip
    (2024) Clunes Squella, Matías; Browning, John; Cortez Campaña, Jorge Osvaldo; Cembrano Perasso, José Miguel; Marquardt Roman, Carlos Jorge; Kavanagh, Janine L.; Gudmundsson, Agust
    Understanding the stress distribution around shallow magma chambers is vital for forecasting eruption sites and magma propagation directions. To achieve accurate forecasts, comprehensive insight into the stress field surrounding magma chambers and near the surface is essential. Existing stress models for pressurized magma chambers often assume a homogenous elastic half-space or a heterogeneous crust with varying mechanical properties in horizontal layers. However, as many volcanoes have complex, non-horizontal, and heterogeneous layers, we enhance these assumptions by considering mechanically stratified layers with varying dips. We employed the Finite Element Method (FEM) to create numerical models simulating three chamber geometries: circular, sill-like and prolate. The primary condition was a 10 MPa excess pressure within the magma chamber, generating the stress field. Layers dips by 20-degree increments, with differing elastic moduli, represented by stiffness ratios of the successive layers (EU/EL) ranging from 0.01 to 100. Our findings validate prior research on heterogeneous crustal modeling, showing that high stiffness ratios disrupt stress within layers and induce local stress rotations at mismatched interfaces. Layer dip further influences stress fields, shifting the location of maximum stress concentration over varying distances. This study underscores the significance of accurately understanding mechanical properties, layer dip in volcanoes, and magma chamber geometry. Improving forecasting of future eruption vents in active volcanoes, particularly in the Andes with its deformed, folded, and non-horizontal stratified crust, hinges on this knowledge. By expanding stress models to incorporate complex geological structures, we enhance our ability to forecast eruption sites and magma propagation paths.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback