Browsing by Author "Celis, Freddy"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemGold Nanoparticles Mediate Improved Detection of β-amyloid Aggregates by Fluorescence(2020) Jara-Guajardo, Pedro; Cabrera, Pablo; Celis, Freddy; Soler, Monica; Berlanga, Isadora; Parra-Munoz, Nicole; Acosta, Gerardo; Albericio, Fernando; Guzman, Fanny; Campos, Marcelo; Alvarez, Alejandra; Morales-Zavala, Francisco; Kogan, Marcelo J.The early detection of the amyloid beta peptide aggregates involved in Alzheimer's disease is crucial to test new potential treatments. In this research, we improved the detection of amyloid beta peptide aggregates in vitro and ex vivo by fluorescence combining the use of CRANAD-2 and gold nanorods (GNRs) by the surface enhancement fluorescence effect. We synthetized GNRs and modified their surface with HS-PEG-OMe and HS-PEG-COOH and functionalized them with the D1 peptide, which has the capability to selectively bind to amyloid beta peptide. For an in vitro detection of amyloid beta peptide, we co-incubated amyloid beta peptide aggregates with the probe CRANAD-2 and GNR-PEG-D1 observing an increase in the intensity of the fluorescence signal attributed to surface enhancement fluorescence. Furthermore, the surface enhancement fluorescence effect was observed in brain slices of transgenic mice with Alzheimer's disease co-incubated with CRANAD-2 and GNR-PEG-D1. An increase in the fluorescence signal was observed allowing the detection of aggregates that cannot be detected with the single use of CRANAD-2. Gold nanoparticles allowed an improvement in the detection of the amyloid aggregated by fluorescence in vitro and ex vivo.
- ItemNitrite reduction on a multimetallic porphyrin/polyoxotungstate layer-by-layer modified electrodes(2016) García, Macarena; Honores Sotelo, Jessica Scarlet; Quezada Sandoval, Diego Alonso; Díaz Navarro, Carlos Patricio; Dreyse, Paulina A.; Celis, Freddy; Canzi, Gabriele; Guzman, Fernando; Isaacs Casanova, Mauricio; Kubiak, Clifford P.; Aguirre, Maria J.
- ItemPeptide Targeted Gold Nanoplatform Carrying miR-145 Induces Antitumoral Effects in Ovarian Cancer Cells(2022) Salas-Huenuleo, Edison; Hernandez, Andrea; Lobos-Gonzalez, Lorena; Polakovicova, Iva; Morales-Zavala, Francisco; Araya, Eyleen; Celis, Freddy; Romero, Carmen; Kogan, Marcelo J.One of the recent attractive therapeutic approaches for cancer treatment is restoring downregulated microRNAs. They play an essential muti-regulatory role in cellular processes such as proliferation, differentiation, survival, apoptosis, cell cycle, angiogenesis, and metastasis, among others. In this study, a gold nanoplatform (GNPF) carrying miR-145, a downregulated microRNA in many cancer types, including epithelial ovarian cancer, was designed and synthesized. For targeting purposes, the GNPF was functionalized with the FSH33 peptide, which provided selectivity for ovarian cancer, and loaded with the miR-145 to obtain the nanosystem GNPF-miR-145. The GNPF-mir-145 was selectively incorporated in A2780 and SKOV3 cells and significantly inhibited cell viability and migration and exhibited proliferative and anchor-independent growth capacities. Moreover, it diminished VEGF release and reduced the spheroid size of ovarian cancer through the damage of cell membranes, thus decreasing cell viability and possibly activating apoptosis. These results provide important advances in developing miR-based therapies using nanoparticles as selective vectors and provide approaches for in vivo evaluation.