Browsing by Author "Catenaccio, Alejandra"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemActivation of the unfolded protein response promotes axonal regeneration after peripheral nerve injury(2016) Hetz, C.; Court G., Felipe; Oñate, M.; Catenaccio, Alejandra; Martínez Bravo, Gabriela; Armentano, D.; Parsons, G.; Kerr, B.
- ItemApplying the area fraction fractionator (AFF) probe for total volume estimations of somatic, dendritic and axonal domains of the nigrostriatal dopaminergic system in a murine model(2024) Onate-Ponce, Alejandro; Munoz-Munoz, Catalina; Catenaccio, Alejandra; Court, Felipe A.; Henny, PabloBackground: The Cavalieri estimator is used for volume measurement of brain and brain regions. Derived from this estimator is the Area Fraction Fractionator (AFF), used for efficient area and number estimations of small 2D elements, such as axons in cross-sectioned nerves. However, to our knowledge, the AFF has not been combined with serial sectioning analysis to measure the volume of small-size nervous structures. New method: Using the nigrostriatal dopaminergic system as an illustrative case, we describe a protocol based on Cavalieri's principle and AFF to estimate the volume of its somatic, nuclear, dendritic, axonal and axon terminal cellular compartments in the adult mouse. The protocol consists of (1) systematic random sampling of sites within and across sections in regions of interest (substantia nigra, the nigrostriatal tract, caudate-putamen), (2) confocal image acquisition of sites, (3) marking of cellular domains using Cavalieri's 2D point-counting grids, and 4) determination of compartments' total volume using the estimated area of each compartment, and between-sections distance. Results: The volume of the nigrostriatal system per hemisphere is 0.38 mm3, with 5 % corresponding to perikarya and cell nuclei, 10 % to neuropil/dendrites, and 85 % to axons and varicosities. Comparison with existing methods: In contrast to other methods to measure volume of discrete objects, such as the optical nucleator or 3D reconstructions, it stands out for its versatility and ease of use. Conclusions: The use of a simple quantitative, unbiased approach to assess the global state of a system may allow quantification of compartment-specific changes that may accompany neurodegenerative processes.
- ItemAxonal Degeneration Is Mediated by Necroptosis Activation(2019) Arrazola, Macarena S.; Saquel, Cristian; Catalan, Romina J.; Barrientos, Sebastian A.; Hernandez, Diego E.; Martinez, Nicolas W.; Catenaccio, Alejandra; Court, Felipe A.Axonal degeneration, which contributes to functional impairment in several disorders of the nervous system, is an important target for neuroprotection. Several individual factors and subcellular events have been implicated in axonal degeneration, but researchers have so far been unable to identify an integrative signaling pathway activating this self-destructive process. Through pharmacological and genetic approaches, we tested whether necroptosis, a regulated cell-death mechanism implicated in the pathogenesis of several neurodegenerative diseases, is involved in axonal degeneration. Pharmacological inhibition of the necroptotic kinase RIPK1 using necrostatin-1 strongly delayed axonal degeneration in the peripheral nervous system and CNS of wild-type mice of either sex and protected in vitro sensory axons from degeneration after mechanical and toxic insults. These effects were also observed after genetic knock-down of RIPK3, a second key regulator of necroptosis, and the downstream effector MLKL (Mixed Lineage Kinase Domain-Like). RIPK1 inhibition prevented mitochondrial fragmentation in vitro and in vivo, a typical feature of necrotic death, and inhibition of mitochondrial fission by Mdivi also resulted in reduced axonal loss in damaged nerves. Furthermore, electrophysiological analysis demonstrated that inhibition of necroptosis delays not only the morphological degeneration of axons, but also the loss of their electrophysiological function after nerve injury. Activation of the necroptotic pathway early during injury-induced axonal degeneration was made evident by increased phosphorylation of the downstream effector MLKL. Our results demonstrate that axonal degeneration proceeds by necroptosis, thus defining a novel mechanistic framework in the axonal degenerative cascade for therapeutic interventions in a wide variety of conditions that lead to neuronal loss and functional impairment.
- ItemCollateral Sprouting of Peripheral Sensory Neurons Exhibits a Unique Transcriptomic Profile(2020) Lemaitre, Dominique; Llavero Hurtado, Maica; De Gregorio, Cristian; Onate, Maritza; Martinez, Gabriela; Catenaccio, Alejandra; Wishart, Thomas M.; Court, Felipe A.Peripheral nerve injuries result in motor and sensory dysfunction which can be recovered by compensatory or regenerative processes. In situations where axonal regeneration of injured neurons is hampered, compensation by collateral sprouting from uninjured neurons contributes to target reinnervation and functional recovery. Interestingly, this process of collateral sprouting from uninjured neurons has been associated with the activation of growth-associated programs triggered by Wallerian degeneration. Nevertheless, the molecular alterations at the transcriptomic level associated with these compensatory growth mechanisms remain to be fully elucidated. We generated a surgical model of partial sciatic nerve injury in mice to mechanistically study degeneration-induced collateral sprouting from spared fibers in the peripheral nervous system. Using next-generation sequencing and Ingenuity Pathway Analysis, we described the sprouting-associated transcriptome of uninjured sensory neurons and compare it with the activated by regenerating neurons. In vitro approaches were used to functionally assess sprouting gene candidates in the mechanisms of axonal growth. Using a novel animal model, we provide the first description of the sprouting transcriptome observed in uninjured sensory neurons after nerve injury. This collateral sprouting-associated transcriptome differs from that seen in regenerating neurons, suggesting a molecular program distinct from axonal growth. We further demonstrate that genetic upregulation of novel sprouting-associated genes activates a specific growth program in vitro, leading to increased neuronal branching. These results contribute to our understanding of the molecular mechanisms associated with collateral sprouting in vivo. The data provided here will therefore be instrumental in developing therapeutic strategies aimed at promoting functional recovery after injury to the nervous system.
- ItemLong-term social isolation stress exacerbates sex-specific neurodegeneration markers in a natural model of Alzheimer's disease(2023) Oliva, Carolina A.; Lira, Matias; Jara, Claudia; Catenaccio, Alejandra; Mariqueo, Trinidad A.; Lindsay, Carolina B.; Bozinovic, Francisco; Cavieres, Grisel; Inestrosa, Nibaldo C.; Tapia-Rojas, Cheril; Rivera, Daniela S.Social interactions have a significant impact on health in humans and animal models. Social isolation initiates a cascade of stress-related physiological disorders and stands as a significant risk factor for a wide spectrum of morbidity and mortality. Indeed, social isolation stress (SIS) is indicative of cognitive decline and risk to neurodegenerative conditions, including Alzheimer's disease (AD). This study aimed to evaluate the impact of chronic, long-term SIS on the propensity to develop hallmarks of AD in young degus (Octodon degus), a long-lived animal model that mimics sporadic AD naturally. We examined inflammatory factors, bioenergetic status, reactive oxygen species (ROS), oxidative stress, antioxidants, abnormal proteins, tau protein, and amyloid-beta (A beta) levels in the hippocampus of female and male degus that were socially isolated from post-natal and post-weaning until adulthood. Additionally, we explored the effect of re-socialization following chronic isolation on these protein profiles. Our results showed that SIS promotes a pro-inflammatory scenario more severe in males, a response that was partially mitigated by a period of re-socialization. In addition, ATP levels, ROS, and markers of oxidative stress are severely affected in female degus, where a period of re-socialization fails to restore them as it does in males. In females, these effects might be linked to antioxidant enzymes like catalase, which experience a decline across all SIS treatments without recovery during re-socialization. Although in males, a previous enzyme in antioxidant pathway diminishes in all treatments, catalase rebounds during re-socialization. Notably, males have less mature neurons after chronic isolation, whereas phosphorylated tau and all detectable forms of A beta increased in both sexes, persisting even post re-socialization. Collectively, these findings suggest that long-term SIS may render males more susceptible to inflammatory states, while females are predisposed to oxidative states. In both scenarios, the accumulation of tau and A beta proteins increase the individual susceptibility to early-onset neurodegenerative conditions such as AD.
- ItemSprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration(2014) Collyer, E.; Catenaccio, Alejandra; Lemaitre, D.; Díaz, P.; Valenzuela, V.; Bronfman C., Francisca; Court G., Felipe
- ItemThe necroptosis machinery mediates axonal degeneration in a model of Parkinson disease(2020) Onate, Maritza; Catenaccio, Alejandra; Salvadores, Natalia; Saquel, Cristian; Martinez, Alexis; Moreno-Gonzalez, Ines; Gamez, Nazaret; Soto, Paulina; Soto, Claudio; Hetz, Claudio; Court, Felipe A.Parkinson's disease (PD) is the second most common neurodegenerative condition, characterized by motor impairment due to the progressive degeneration of dopaminergic neurons in the substantia nigra and depletion of dopamine release in the striatum. Accumulating evidence suggest that degeneration of axons is an early event in the disease, involving destruction programs that are independent of the survival of the cell soma. Necroptosis, a programmed cell death process, is emerging as a mediator of neuronal loss in models of neurodegenerative diseases. Here, we demonstrate activation of necroptosis in postmortem brain tissue from PD patients and in a toxin-based mouse model of the disease. Inhibition of key components of the necroptotic pathway resulted in a significant delay of 6-hydroxydopamine-dependent axonal degeneration of dopaminergic and cortical neurons in vitro. Genetic ablation of necroptosis mediators MLKL and RIPK3, as well as pharmacological inhibition of RIPK1 in preclinical models of PD, decreased dopaminergic neuron degeneration, improving motor performance. Together, these findings suggest that axonal degeneration in PD is mediated by the necroptosis machinery, a process here referred to as necroaxoptosis, a druggable pathway to target dopaminergic neuronal loss.