Browsing by Author "Castro Anich, Margarita"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemLearning Reward Machines: A Study in Partially Observable Reinforcement Learning(2023) Toro Icarte, Rodrigo Andrés; Klassen, Toryn Q.; Valenzano, Richard; Castro Anich, Margarita; Waldie, Ethan; McIlraith, Sheila A.Reinforcement Learning (RL) is a machine learning paradigm wherein an artificial agentinteracts with an environment with the purpose of learning behaviour that maximizesthe expected cumulative reward it receives from the environment. Reward machines(RMs) provide a structured, automata-based representation of a reward function thatenables an RL agent to decompose an RL problem into structured subproblems that canbe efficiently learned via off-policy learning. Here we show that RMs can be learnedfrom experience, instead of being specified by the user, and that the resulting problemdecomposition can be used to effectively solve partially observable RL problems. We posethe task of learning RMs as a discrete optimization problem where the objective is to findan RM that decomposes the problem into a set of subproblems such that the combinationof their optimal memoryless policies is an optimal policy for the original problem. Weshow the effectiveness of this approach on three partially observable domains, where itsignificantly outperforms A3C, PPO, and ACER, and discuss its advantages, limitations,and broader potential.
- ItemOptimization methods based on decision diagrams for constraint programming, AI planning, and mathematical programming(2023) Castro Anich, MargaritaDecision diagrams (DDs) are graphical structures that can be used to solve discrete optimization problems by representing the set of feasible solutions as paths in a graph. This graphical encoding of the feasibility set can represent complex combinatorial structures and is the foundation of several novel optimization techniques. Due to their flexibility, DDs have become an attractive optimization tool for researchers in different fields, including operations research and computer science.
