Browsing by Author "Castillo-Rodriguez, Judith"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemComparison of Different Synthetic Routes of Hybrid Hematite-TiO2 Nanotubes-Based Electrodes(2021) Fornazari, Ana Luiza; Castillo-Rodriguez, Judith; Correa-Encalada, Daniel; Dalchiele, Enrique A.; Hevia, Samuel A.; del Rio, RodrigoNowadays, green hydrogen is an important niche of interest in which the search for a suitable composite material is indispensable. In this sense, titanium oxide nanotubes (TiO2 nanotube, TNTs) were prepared from double anodic oxidation of Ti foil in ethylene glycol electrolyte. The morphology of the nanotubes was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Once characterized, nanotubes were used as templates for the deposition of hematite. The use of three synthetic procedures was assayed: Chemical Vapor Deposition (CVD), Successive Ionic Layer Adsorption and Reaction (SILAR), and electrochemical synthesis. In the first case, CVD, the deposition of hematite onto TiO2 yielded an uncovered substrate with the oxide and a negative shift of the flat band potential. On the other hand, the SILAR method yielded a considerable amount of hematite on the surface of nanotubes, leading to an obstruction of the tubes in most cases. Finally, with the electrochemical synthesis, the composite material obtained showed great control of the deposition, including the inner surface of the TNT. In addition, the impedance characterization showed a negative shift, indicating the changes of the interface electrode-electrolyte due to the modification with hematite. Finally, the screening of the methods showed the electrochemical synthesis as the best protocol for the desired material.
- ItemHighly efficient hydrogen evolution reaction, plasmon-enhanced by AuNP-l-TiO2NP photocatalysts(2020) Castillo-Rodriguez, Judith ; Ortiz, Pedro D. ; Isaacs, Mauricio ; Martinez, Natalia P. ; O’Shea, James N. ; Hart, Jack ; Temperton, Robert ; Zarate, Ximena ; Contreras, David ; Schott, EduardoA set of AuNPs-l-TiO2NP nanoaggregates which showed efficient covering of the semiconductor's surface by AuNPs, as well as appropriate AuNP sizes for effective sensibilization were used as photocatalysts for the hydrogen evolution reaction (HER). Three aliphatic short-chain linkers: 3-mercaptopropionic acid (MPA), thioglycolic acid (TGA) and thiolactic acid (TLA) were used as stabilizing agents. The slight structure variations of the linkers did not produce differences in the AuNP size and morphology. However, it was interesting to show how the photocatalytic performance of the nanoaggregates is dependent on the linker present, as well as to determine the influence of the Au/TiO(2)ratio. It was found that TGA gave the best performance at a longer irradiation time, though high amounts of H(2)were also obtained for the other two linkers. Furthermore, for all samples large amounts of hydrogen were obtained, which are significantly higher than that usually obtained with plasmon-sensitized TiO(2)nanostructures. In addition, high amounts of H(2)were obtained after five catalytic cycles for all samples, showing the suitability of these nanoaggregates for the photoinduced HER.
- ItemThe development of Au-titania photoanode composites toward semiflexible dye-sensitized solar cells(2023) Castillo-Rodriguez, Judith; Ortiz, Pedro D.; Mahmood, Reeda; Gossage, Robert A.; Llanos, Jaime; Espinoza, Dario; Zarate, Ximena; Koivisto, Bryan D.; Schott, EduardoConsidering the widespread use of windows in modern urban landscapes, converting these substrates into photovoltaic devices would remarkably impact modern energy generation. A flexible dye-sensitized solar cell (DSSC) architecture is preferred for such applications. A key component of the DSSC is the dye-sensitized photoanode. Herein, we examine different nanoparticle composites within the semiconductor anode formulation and their effect on device performance. Mesoporous titania particles (TiO2) modified with Au-nanoparticles (TiO2@AuNPs) were synthesized using precipitation strategies to assess the solvent effect on the particle size and the efficiency of the devices. The materials were then fully characterized through SEM, XRD, and DRS before and after thermal treatment. A paste prepared from the synthesized semiconductors was applied onto the substrate using the doctor blading technique. The use of high thermal treatment for glass substrates (HTT), low temperature thermal treatment (LTT), and LTT combined with 2 h of UV curing (LTT_UV) was explored. In the case of ITO/PET (flexible substrate) only low temperature thermal treatment were used (LTT and LTT_UV). After characterization (XRD and DRS), the anodes were loaded using a metal-free dye. To complete the comparison, several groups of cells were characterized: considering solvent (EtOH and EtOH:H2O), thermal treatment (HTT, LTT, and LTT_UV), and semiconductor material (TiO2 and TiO2@AuNP). Rigid (glass anode-glass cathode) and semiflexible (flexible anode-glass cathode) DSSCs were obtained with efficiencies from 0.03% to 2.4%, with a substantial performance difference seen using different thermal treatments, and a mild to low effect on semiconductor composition and the used substrate.