Browsing by Author "Carrillo, Hugo"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemComparison of Improved Unidirectional Dual Velocity-Encoding MRI Methods(2023) Franco, Pamela; Ma, Liliana; Schnell, Susanne; Carrillo, Hugo; Montalba, Cristian; Markl, Michael; Bertoglio, Cristobal; Uribe, SergioBackground In phase-contrast (PC) MRI, several dual velocity encoding methods have been proposed to robustly increase velocity-to-noise ratio (VNR), including a standard dual-VENC (SDV), an optimal dual-VENC (ODV), and bi- and triconditional methods. Purpose To develop a correction method for the ODV approach and to perform a comparison between methods. Study Type Case-control study. Population Twenty-six volunteers. Field Strength/Sequence 1.5 T phase-contrast MRI with VENCs of 50, 75, and 150 cm/second. Assessment Since we acquired single-VENC protocols, we used the background phase from high-VENC (VENCH) to reconstruct the low-VENC (VENCL) phase. We implemented and compared the unwrapping methods for different noise levels and also developed a correction of the ODV method. Statistical Tests Shapiro-Wilk's normality test, two-way analysis of variance with homogeneity of variances was performed using Levene's test, and the significance level was adjusted by Tukey's multiple post hoc analysis with Bonferroni (P < 0.05). Results Statistical analysis revealed no extreme outliers, normally distributed residuals, and homogeneous variances. We found statistically significant interaction between noise levels and the unwrapping methods. This implies that the number of non-unwrapped pixels increased with the noise level. We found that for beta = VENCL/VENCH = 1/2, unwrapping methods were more robust to noise. The post hoc test showed a significant difference between the ODV corrected and the other methods, offering the best results regarding the number of unwrapped pixels. Data Conclusions All methods performed similarly without noise, but the ODV corrected method was more robust to noise at the price of a higher computational time. Level of Evidence 4 Technical Efficacy Stage 1
- ItemMultiple motion encoding in phase-contrast MRI: A general theory and application to elastography imaging(2022) Herthum, Helge; Carrillo, Hugo; Osses, Axel; Uribe, Sergio; Sack, Ingolf; Bertoglio, CristobalWhile MRI allows to encode the motion of tissue in the magnetization's phase, it remains yet a challenge to obtain high fidelity motion images due to wraps in the phase for high encoding efficiencies. Therefore, we propose an optimal multiple motion encoding method (OMME) and exemplify it in Magnetic Resonance Elastography (MRE) data. OMME is formulated as a non-convex least-squares problem for the motion using an arbitrary number of phase-contrast measurements with different motion encoding gradients (MEGs). The mathematical properties of OMME are proved in terms of standard deviation and dynamic range of the motion's estimate for arbitrary MEGs combination which are confirmed using synthetically generated data. OMME's performance is assessed on MRE data from in vivo human brain experiments and compared to dual encoding strategies. The unwrapped images are further used to reconstruct stiffness maps and compared to the ones obtained using conventional unwrapping methods. OMME allowed to successfully combine several MRE phase images with different MEGs, outperforming dual encoding strategies in either motion-to-noise ratio (MNR) or number of successfully reconstructed voxels with good noise stability. This lead to stiffness maps with greater resolution of details than obtained with conventional unwrapping methods. The proposed OMME method allows for a flexible and noise robust increase in the dynamic range and thus provides wrap-free phase images with high MNR. In MRE, the method may be especially suitable when high resolution images with high MNR are needed. (c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
- ItemOptimal Dual-VENC Unwrapping in Phase-Contrast MRI(2019) Carrillo, Hugo; Osses, Axel; Uribe, Sergio; Bertoglio, CristobalDual-VENC strategies have been proposed to improve the velocity-to-noise ratio in phase-contrast MRI. However, they are based on aliasing-free high-VENC data. The aim of this paper is to propose a dual-VENC velocity estimation method allowing high-VENC aliased data. For this purpose, we reformulate the phase-contrast velocity as a least squares estimator, providing a natural framework for including multiple encoding gradient measurements. By analyzing the mathematical properties of both single-and dual-VENCproblems, we can justify theoretically high/low-VENC ratios such that the aliasing velocity can be minimized. The resulting reconstruction algorithm was assessed using three types of data: numerical, experimental, and volunteers. In clinical practice, this method would allow shorter examination times by avoiding tedious adaptation of VENC values by repeated scans.