• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cardenas, Esteban"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    On the Asymptotic Dynamics of 2-D Magnetic Quantum Systems
    (2021) Cardenas, Esteban; Hundertmark, Dirk; Stockmeyer, Edgardo; Vugalter, Semjon
    In this work, we provide results on the long-time localization in space (dynamical localization) of certain two-dimensional magnetic quantum systems. The underlying Hamiltonian may have the form H=H-0+W, where H-0 is rotationally symmetric and has dense point spectrum and W is a perturbation that breaks the rotational symmetry. In the latter case, we also give estimates for the growth of the angular momentum operator in time.
  • No Thumbnail Available
    Item
    Spectral properties of Landau Hamiltonians with non-local potentials
    (2020) Cardenas, Esteban; Raikov, Georgi; Tejeda, Ignacio
    We consider the Landau Hamiltonian H-0, self-adjoint in L-2 (R-2), whose spectrum consists of an arithmetic progression of infinitely degenerate positive eigenvalues Lambda(q), q is an element of Z(+). We perturb H-0 by a non-local potential written as a bounded pseudo-differential operator Op(w)(V) with real-valued Weyl symbol V, such that Op(w)(V)H-0(-1) is compact. We study the spectral properties of the perturbed operator H-V = H-0 Op(w)(V). First, we construct symbols V, possessing a suitable symmetry, such that the operator H-V admits an explicit eigenbasis in L-2 (R-2), and calculate the corresponding eigenvalues. Moreover, for V which are not supposed to have this symmetry, we study the asymptotic distribution of the eigenvalues of H-V adjoining any given Lambda(q). We find that the effective Hamiltonian in this context is the Toeplitz operator T-q(V) = p(q)Op(w)(V)p(q), where p(q) is the orthogonal projection onto Ker(H-0 - Lambda I-q), and investigate its spectral asymptotics.
  • No Thumbnail Available
    Item
    Tunneling Estimates for Two-Dimensional Perturbed Magnetic Dirac Systems
    (2024) Cardenas, Esteban; Pavez, Benjamin; Stockmeyer, Edgardo
    We prove tunneling estimates for two-dimensional Dirac systems which are localized in space due to the presence of a magnetic field. The Hamiltonian driving the motion admits the decomposition H=H0+W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H = H_0 + W$$\end{document}, where H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_0 $$\end{document} is a rotationally symmetric magnetic Dirac operator and W is a position-dependent matrix-valued potential satisfying certain smoothness condition in the angular variable. A consequence of our results are upper bounds for the growth in time of the expected size of the system and its total angular momentum.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback