Browsing by Author "Canon, Paola"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemFunctional characterization of Citrus macrophylla BOR1 as a boron transporter(2013) Canon, Paola; Aquea, Felipe; Rodriguez-Hoces de la Guardia, Amparo; Arce-Johnson, PatricioPlants have evolved to develop an efficient system of boron uptake and transport using a range of efflux carriers named BOR proteins. In this work we isolated and characterized a boron transporter of citrus (Citrus macrophylla), which was named CmBOR1 for its high homology to AtBOR1. CmBOR1 has 4403bp and 12 exons. Its coding region has 2145bp and encodes for a protein of 714 amino acids. CmBOR1 possesses the molecular features of BORs such as an anion exchanger domain and the presence of 10 transmembrane domains. Functional analysis in yeast indicated that CmBOR1 has an efflux boron transporter activity, and transformants have increased tolerance to excess boron. CmBOR1 is expressed in leaves, stem and flowers and shows the greatest accumulation in roots. The transcript accumulation was significantly increased under boron deficiency conditions in shoots. In contrast, the accumulation of the transcript did not change in boron toxicity conditions. Finally, we observed that constitutive expression of CmBOR1 was able to increase tolerance to boron deficiency conditions in Arabidopsis thaliana, suggesting that CmBOR1 is a xylem loading boron transporter. Based on these results, it was determined that CmBOR1 encodes a boric acid/borate transporter involved in tolerance to boron deficiency in plants.
- ItemStructure-function relationship between the tobamovirus TMV-Cg coat protein and the HR-like response(MICROBIOLOGY SOC, 2008) Ehrenfeld, Nicole; Gonzalez, Angel; Canon, Paola; Medina, Consuelo; Perez Acle, Tomas; Arce Johnson, PatricioThe tobamovirus TMV-Cg induces an HR-like response in Nicotiana tabacum cv. Xanthi nn sensitive plants lacking the N or N' resistance genes. This response has been characterized by the appearance of necrotic lesions in the inoculated leaf and viral systemic spread, although the defence pathways are activated in the plant. A previous study demonstrated that the coat protein (CP) of TMV-Cg (CPCg) was the elicitor of this HR-like response. We examined the influence of four specific amino acid substitutions on the structure of CPCg, as well as on the development of the host response. To gain insights into the structural implications of these substitutions, a set of molecular dynamic experiments was performed using comparative models of wild-type and mutant CPCg as well as the CP of the U1 strain of TMV (CPU1), which is not recognized by the plants. A P21L mutation produces severe changes in the three-dimensional structure of CPCg and is more unstable when this subunit is laterally associated in silico. This result may explain the observed incapacity of this mutant to assemble virions. Two other CPCg mutations (R46G and S54K) overcome recognition by the plant and do not induce an HR-like response. A double CPCg mutant P21L-S54K recovered its capacity to form virions and to induce an HR-like response. Our results suggest that the structural integrity of the CP proteins is important for triggering the HIR-like response.