• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Canessa, Paulo"

Now showing 1 - 17 of 17
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    A comprehensive transcription factor and DNA-binding motif resource for the construction of gene regulatory networks in Botrytis cinerea and Trichoderma atroviride
    (2021) Olivares-Yanez, Consuelo; Sanchez, Evelyn; Perez-Lara, Gabriel; Seguel, Aldo; Camejo, Pamela Y.; Larrondo, Luis F.; Vidal, Elena A.; Canessa, Paulo
    Botrytis cinerea and Trichoderma atroviride are two relevant fungi in agricultural systems. To gain insights into these organisms' transcriptional gene regulatory networks (GRNs), we generated a manually curated transcription factor (TF) dataset for each of them, followed by a GRN inference utilizing available sequence motifs describing DNA-binding specificity and global gene expression data. As a proof of concept of the usefulness of this resource to pinpoint key transcriptional regulators, we employed publicly available transcriptomics data and a newly generated dual RNA-seq dataset to build context-specific Botrytis and Trichoderma GRNs under two different biological paradigms: exposure to continuous light and Botrytis-Trichoderma confrontation assays. Network analysis of fungal responses to constant light revealed striking differences in the transcriptional landscape of both fungi. On the other hand, we found that the confrontation of both microorganisms elicited a distinct set of differentially expressed genes with changes in T. atroviride exceeding those in B. cinerea. Using our regulatory network data, we were able to determine, in both fungi, central TFs involved in this interaction response, including TFs controlling a large set of extracellular peptidases in the biocontrol agent T. atroviride. In summary, our work provides a comprehensive catalog of transcription factors and regulatory interactions for both organisms. This catalog can now serve as a basis for generating novel hypotheses on transcriptional regulatory circuits in different experimental contexts. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
  • No Thumbnail Available
    Item
    Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood
    (2014) Hori, Chiaki; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Suzuki, Hitoshi; Master, Emma; Ferreira, Patricia; Ruiz-Duenas, Francisco J.; Held, Benjamin; Canessa, Paulo; Larrondo, Luis F.; Schmoll, Monika; Druzhinina, Irina S.; Kubicek, Christian P.; Gaskell, Jill A.; Kersten, Phil; St John, Franz; Glasner, Jeremy; Sabat, Grzegorz; BonDurant, Sandra Splinter; Syed, Khajamohiddin; Yadav, Jagjit; Mgbeahuruike, Anthony C.; Kovalchuk, Andriy; Asiegbu, Fred O.; Lackner, Gerald; Hoffmeister, Dirk; Rencoret, Jorge; Gutierrez, Ana; Sun, Hui; Lindquist, Erika; Barry, Kerrie; Riley, Robert; Grigoriev, Igor V.; Henrissat, Bernard; Kuees, Ursula; Berka, Randy M.; Martinez, Angel T.; Covert, Sarah F.; Blanchette, Robert A.; Cullen, Daniel
    Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.
  • No Thumbnail Available
    Item
    Assessing the Effects of Light on Differentiation and Virulence of the Plant Pathogen Botrytis cinerea: Characterization of the White Collar Complex
    (2013) Canessa, Paulo; Schumacher, Julia; Hevia, Montserrat A.; Tudzynski, Paul; Larrondo, Luis F.
    Organisms are exposed to a tough environment, where acute daily challenges, like light, can strongly affect several aspects of an individual's physiology, including pathogenesis. While several fungal models have been widely employed to understand the physiological and molecular events associated with light perception, various other agricultural-relevant fungi still remain, in terms of their responsiveness to light, in the dark. The fungus Botrytis cinerea is an aggressive pathogen able to cause disease on a wide range of plant species. Natural B. cinerea isolates exhibit a high degree of diversity in their predominant mode of reproduction. Thus, the majority of naturally occurring strains are known to reproduce asexually via conidia and sclerotia, and sexually via apothecia. Studies from the 1970's reported on specific developmental responses to treatments with near-UV, blue, red and far-red light. To unravel the signaling machinery triggering development - and possibly also connected with virulence - we initiated the functional characterization of the transcription factor/photoreceptor BcWCL1 and its partner BcWCL2, that form the White Collar Complex (WCC) in B. cinerea. Using mutants either abolished in or exhibiting enhanced WCC signaling (overexpression of both bcwcl1 and bcwcl2), we demonstrate that the WCC is an integral part of the mentioned machinery by mediating transcriptional responses to white light and the inhibition of conidiation in response to this stimulus. Furthermore, the WCC is required for coping with excessive light, oxidative stress and also to achieve full virulence. Although several transcriptional responses are abolished in the absence of bcwcl1, the expression of some genes is still light induced and a distinct conidiation pattern in response to daily light oscillations is enhanced, revealing a complex underlying photobiology. Though overlaps with well-studied fungal systems exist, the light-associated machinery of B. cinerea appears more complex than those of Neurospora crassa and Aspergillus nidulans.
  • No Thumbnail Available
    Item
    Circadian oscillations in Trichoderma atroviride and the role of core clock components in secondary metabolism, development, and mycoparasitism against the phytopathogen Botrytis cinerea
    (2022) Henriquez-Urrutia, Marlene; Spanner, Rebecca; Olivares-Yanez, Consuelo; Seguel-Avello, Aldo; Perez-Lara, Rodrigo; Guillen-Alonso, Hector; Winkler, Robert; Herrera-Estrella, Alfredo; Canessa, Paulo; Larrondo, Luis F.
    Circadian clocks are important for an individual's fitness, and recent studies have underlined their role in the outcome of biological interactions. However, the relevance of circadian clocks in fungal-fungal interactions remains largely unexplored. We sought to characterize a functional clock in the biocontrol agent Trichoderma atroviride to assess its importance in the mycoparasitic interaction against the phytopathogen Botrytis cinerea. Thus, we confirmed the existence of circadian rhythms in T. atroviride, which are temperature-compensated and modulated by environmental cues such as light and temperature. Nevertheless, the presence of such molecular rhythms appears to be highly dependent on the nutritional composition of the media. Complementation of a clock null (delta frq) Neurospora crassa strain with the T. atroviride-negative clock component (tafrq) restored core clock function, with the same period observed in the latter fungus, confirming the role of tafrq as a bona fide core clock component. Confrontation assays between wild -type and clock mutant strains of T. atroviride and B. cinerea, in constant light or darkness, revealed an inhibitory effect of light on T. atroviride's mycoparasitic capabilities. Interestingly, when confrontation assays were performed under light/dark cycles, T. atroviride's overgrowth capacity was enhanced when inoculations were at dawn compared to dusk. Deleting the core clock-negative element FRQ in B. cinerea, but not in T. atroviride, was vital for the daily differential phenotype, suggesting that the B. cinerea clock has a more significant influence on the result of this interaction. Additionally, we observed that T. atroviride clock components largely modulate development and secondary metabolism in this fungus, including the rhythmic production of distinct volatile organic compounds (VOCs). Thus, this study provides evidence on how clock components impact diverse aspects of T. atroviride lifestyle and how daily changes modulate fungal interactions and dynamics.
  • No Thumbnail Available
    Item
    Cloning and functional characterization of the gene encoding the transcription factor Ace1 in the basidiomycete Phanerochaete chrysosporium
    (2006) Polanco, Ruben; Canessa, Paulo; Rivas, Alexis; Larrondo, Luis F.; Lobos, Sergio; Vicuna, Rafael
    In this report we describe the isolation and characterization of a gene encoding the transcription factor Ace 1 (Activation protein of cup 1 Expression) in the white rot fungus Phanerochaete chrysosporium. Pc-ace 1 encodes a predicted protein of 633 amino acids containing the copper-fist DNA binding domain typically found in fungal transcription factors such as Ace 1 Mac 1 and Haa 1 from Saccharomyces cerevisiae. The Pc-ace 1 gene is localized in Scaffold 5, between coordinates 220841 and 222983. A S. cerevisiae ace 1 null mutant strain unable to grow in high-copper medium was fully complemented by transformation with the cDNA of Pc-ace 1. Moreover, Northern blot hybridization studies indicated that Pc-ace 1 cDNA restores copper inducibility of the yeast cup 1 gene, which encodes the metal-binding protein metallothionein implicated in copper resistance. To our knowledge, this is first report describing an Ace 1 transcription factor in basidiomycetes.
  • No Thumbnail Available
    Item
    Effect of manganese on the secretion of manganese-peroxidase by the basidiomycete Ceriporiopsis subvermispora
    (2010) Mancilla, Rodrigo A.; Canessa, Paulo; Manubens, Augusto; Vicuna, Rafael
    The ligninolytic machinery of the widely used model fungus Ceriporiopsis subvermispora includes the enzymes manganese-peroxidase (MnP) and laccase (Lcs). In this work the effect of Mn(II) on the secretion of MnP was studied. Cultures grown in the absence of Mn(II) showed high levels of mnp transcripts. However, almost no MnP enzyme was detected in the extracellular medium, either by enzymatic activity assays or Western blot hybridizations. In the corresponding mycelia, immuno-electron microscopy experiments showed high levels of MnP enzyme within intracellular compartments. These results suggest that in addition to its well-known effect on transcription regulation of mnp genes, manganese influences secretion of MnP to the extracellular medium. Experiments carried out in the presence of cycloheximide confirmed that the metal is required to secrete MnP already synthesized and retained within the cell. (C) 2010 Elsevier Inc. All rights reserved.
  • No Thumbnail Available
    Item
    Expression of genes encoding laccase and manganese-dependent peroxidase in the fungus Ceriporiopsis subvermispora is mediated by an ACE1-like copper-fist transcription factor
    (2009) Miguel Alvarez, Jose; Canessa, Paulo; Mancilla, Rodrigo A.; Polanco, Ruben; Santibanez, Paulina A.; Vicuna, Rafael
    The effect of copper on the expression of genes encoding the ligninolytic enzymes laccase (ICS) and manganese peroxidase (mnp) in Ceriporiopsis subvermispora was evaluated. This metal increased transcript levels of lcs, mnp1 and mnp2. This finding was not unexpected in the case of lcs, since its promoter contains a putative ACE element. Originally characterized in the yeast Saccharomyces cerevisiae, ACE is the target sequence of the ACE1 copper-responsive transcription factor in this microorganism. Analysis of the promoter regions of mnp genes revealed the presence of formerly unnoticed ACE elements. Based on the ace1 gene from Phanerochaete chrysosporium, we isolated and characterized an ACE1-like transcription factor from C. subvermispora (Cs-ACE1) through complementation of a S. cerevisiae ace1 Delta strain. Surprisingly, ACE1 factors from both basidiomycetes exhibit substantial differences, not only structurally but also in their ability to complement the aforementioned yeast strain. Specific binding of Cs-ACE1 to its cognate DNA sequence was confirmed by electrophoretic mobility-shift assays. (C) 2008 Elsevier Inc. All rights reserved.
  • No Thumbnail Available
    Item
    Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion
    (2009) Martinez, Diego; Challacombe, Jean; Morgenstern, Ingo; Hibbett, David; Schmoll, Monika; Kubicek, Christian P.; Ferreira, Patricia; Ruiz-Duenas, Francisco J.; Martinez, Angel T.; Kersten, Phil; Hammel, Kenneth E.; Wymelenberg, Amber Vanden; Gaskell, Jill; Lindquist, Erika; Sabat, Grzegorz; BonDurant, Sandra Splinter; Larrondo, Luis F.; Canessa, Paulo; Vicuna, Rafael; Yadav, Jagjit; Doddapaneni, Harshavardhan; Subramanian, Venkataramanan; Pisabarro, Antonio G.; Lavin, Jose L.; Oguiza, Jose A.; Master, Emma; Henrissat, Bernard; Coutinho, Pedro M.; Harris, Paul; Magnuson, Jon Karl; Baker, Scott E.; Bruno, Kenneth; Kenealy, William; Hoegger, Patrik J.; Kuees, Ursula; Ramaiya, Preethi; Lucash, Susan; Salamov, Asaf; Shapiro, Harris; Tu, Hank; Chee, Christine L.; Misra, Monica; Xie, Gary; Teter, Sarah; Yaver, Debbie; James, Tim; Mokrejs, Martin; Pospisek, Martin; Grigoriev, Igor V.; Brettin, Thomas; Rokhsar, Dan; Berka, Randy; Cullen, Dan
    Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exo-cellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative beta-1-4 endoglucanase were expressed at high levels relative to glucose-grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also up-regulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H2O2. These observations are consistent with a biodegradative role for Fenton chemistry in which Fe( II) and H2O2 react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons with the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.
  • No Thumbnail Available
    Item
    Genome-Wide Characterization of Light-Regulated Gene Expression in Botrytis cinerea Reveals Underlying Complex Photobiology
    (2023) Perez-Lara, Gabriel; Olivares-Yanez, Consuelo; van Bakel, Harm; Larrondo, Luis F.; Canessa, Paulo
    Botrytis cinerea is a necrotrophic fungus characterized mainly by its wide host range of infected plants. The deletion of the white-collar-1 gene (bcwcl1), which encodes for a blue-light receptor/transcription factor, causes a decrease in virulence, particularly when assays are conducted in the presence of light or photocycles. However, despite ample characterization, the extent of the light-modulated transcriptional responses regulated by BcWCL1 remains unknown. In this study, pathogen and pathogen:host RNA-seq analyses, conducted during non-infective in vitro plate growth and when infecting Arabidopsis thaliana leaves, respectively, informed on the global gene expression patterns after a 60 min light pulse on the wild-type B05.10 or increment bcwcl1 B. cinerea strains. The results revealed a complex fungal photobiology, where the mutant did not react to the light pulse during its interaction with the plant. Indeed, when infecting Arabidopsis, no photoreceptor-encoding genes were upregulated upon the light pulse in the increment bcwcl1 mutant. Differentially expressed genes (DEGs) in B. cinerea under non-infecting conditions were predominantly related to decreased energy production in response to the light pulse. In contrast, DEGs during infection significantly differ in the B05.10 strain and the? bcwcl1 mutant. Upon illumination at 24 h post-infection in planta, a decrease in the B. cinerea virulence-associated transcripts was observed. Accordingly, after a light pulse, biological functions associated with plant defense appear enriched among light-repressed genes in fungus-infected plants. Taken together, our results show the main transcriptomic differences between wild-type B. cinerea B05.10 and ? bcwcl1 after a 60 min light pulse when growing saprophytically on a Petri dish and necrotrophically over A. thaliana.
  • No Thumbnail Available
    Item
    bcpmr1 encodes a P-type Ca2+/Mn2+-ATPase mediating cell-wall integrity and virulence in the phytopathogen Botrytis cinerea
    (2015) Plaza, Veronica; Laguees, Yanssuy; Carvajal, Mauro; Perez-Garcia, Luis A.; Mora-Montes, Hector M.; Canessa, Paulo; Larrondo, Luis F.; Castillo, Luis
    The cell wall of fungi is generally composed of an inner skeletal layer consisting of various polysaccharides surrounded by a layer of glycoproteins. These usually contain both N- and O-linked oligosaccharides, coupled to the proteins by stepwise addition of mannose residues by mannosyltransferases in the endoplasmic reticulum and the Golgi apparatus. In yeast, an essential luminal cofactor for these mannosyltransferases is Mn2+ provided by the Ca2+/Mn2+-ATPase known as Pmr1. In this study, we have identified and characterized the Botrytis cinerea pmr1 gene, the closest homolog of yeast PMR1. We hypothesized that bcpmr1 also encodes a Ca2+/Mn2+-ATPase that plays an important role in the protein glycosylation pathway. Phenotypic analysis showed that bcpmr1 null mutants displayed a significant reduction in conidial production, radial growth and diameter of sclerotia. Significant alterations in hyphal cell wall composition were observed including a 83% decrease of mannan levels and an increase in the amount of chitin and glucan. These changes were accompanied by a hypersensitivity to cell wall-perturbing agents such as Calcofluor white, Congo red and zymolyase. Importantly, the Delta bcpmr1 mutant showed reduced virulence in tomato (leafs and fruits) and apple (fruits) and reduced biofilm formation. Together, our results highlight the importance of bcpmr1 for protein glycosylation, cell wall structure and virulence of B. cinerea. (C) 2015 Elsevier Inc. All rights reserved.
  • No Thumbnail Available
    Item
    Interactions between Core Elements of the Botrytis cinerea Circadian Clock Are Modulated by Light and Different Protein Domains
    (2022) Rojas, Vicente; Salinas, Francisco; Romero, Andres; Larrondo, Luis F.; Canessa, Paulo
    Botrytis cinerea possesses a complex light-sensing system composed of eleven photoreceptors. In B. cinerea, bcwcl1 encodes for the BcWCL1 protein, the orthologue of the blue-light photoreceptor WC-1 from Neurospora crassa. The functional partner of BcWCL1 is the BcWCL2 protein, both interacting in the nucleus and forming the B. cinerea white collar complex (BcWCC). This complex is required for photomorphogenesis and circadian regulation. However, no molecular evidence shows a light-dependent interaction between the BcWCC components or light-sensing capabilities in BcWCL1. In this work, by employing a yeast two-hybrid system that allows for the in vivo analysis of protein-protein interactions, we confirm that BcWCL1 and BcWCL2 interact in the absence of light as well as upon blue-light stimulation, primarily through their PAS (Per-Arnt-Sim) domains. Deletion of the PAS domains present in BcWCL1 (BcWCL1(PAS increment )) or BcWCL2 (BcWCL2(PAS increment )) severely impairs the interaction between these proteins. Interestingly, the BcWCL1(PAS increment ) protein shows a blue-light response and interacts with BcWCL2 or BcWCL2(PAS increment ) upon light stimulation. Finally, we demonstrate that BcWCL1 and BcWCL1(PAS increment ) respond to blue light by introducing a point mutation in the photoactive cysteine, confirming that both proteins are capable of light sensing. Altogether, the results revealed the complexity of protein-protein interactions occurring between the core elements of the B. cinerea circadian clock.
  • Loading...
    Thumbnail Image
    Item
    Recent Advances in the Study of the Plant Pathogenic Fungus Botrytis cinerea and its Interaction with the Environment
    (2017) Castillo, Luis; Plaza, Verónica; Larrondo Castro, Luis Fernando; Canessa, Paulo
  • Loading...
    Thumbnail Image
    Item
    Spontaneous circadian rhythms in a cold-adapted natural isolate of Aureobasidium pullulans
    (2017) Franco, Diana L.; Canessa, Paulo; Bellora, Nicolás; Risau Gusman, Sebastián; Olivares Yáñez, Consuelo del Pilar; Pérez Lara, Rodrigo Esteban; Libkind, Diego; Larrondo Castro, Luis Fernando; Marpegan, Luciano
  • No Thumbnail Available
    Item
    Structure and transcriptional impact of divergent repetitive elements inserted within Phanerochaete chrysosporium strain RP-78 genes
    (2007) Larrondo, Luis F.; Canessa, Paulo; Vicuna, Rafael; Stewart, Philip; Vanden Wymelenberg, Amber; Cullen, Dan
    We describe the structure, organization, and transcriptional impact of repetitive elements within the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Searches of the P. chrysosporium genome revealed five copies of pce1, a similar to 1,750-nt non-autonomous, class II element. Alleles encoding a putative glucosyltransferase and a cytochrome P450 harbor pce insertions and produce incomplete transcripts. Class I elements included pcret1, an intact 8.14-kb gypsy-like retrotransposon inserted within a member of the multicopper oxidase gene family. Additionally, we describe a complex insertion of nested transposons within another putative cytochrome P450 gene. The disrupted allele lies within a cluster of > 14 genes, all of which encode family 64 cytochrome P450s. Components of the insertion include a disjoint copia-like element, pcret3, the pol domain of a second retroelement, pcret2, and a duplication of an extended ORF of unknown function. As in the case of the pce elements, pcret1 and pcret2/3 insertions are confined to single alleles, transcripts of which are truncated. The corresponding wild-type alleles are apparently unaffected. In aggregate, P. chrysosporium harbors a complex array of repetitive elements, at least five of which directly influence expression of genes within families of structurally related sequences.
  • No Thumbnail Available
    Item
    The Botrytis cinerea Gene Expression Browser
    (2023) Perez-Lara, Gabriel; Moyano, Tomas C.; Vega, Andrea; Larrondo, Luis F.; Polanco, Ruben; Alvarez, Jose M.; Aguayo, Daniel; Canessa, Paulo
    For comprehensive gene expression analyses of the phytopathogenic fungus Botrytis cinerea, which infects a number of plant taxa and is a cause of substantial agricultural losses worldwide, we developed BEB, a web-based B. cinerea gene Expression Browser. This computationally inexpensive web-based application and its associated database contain manually curated RNA-Seq data for B. cinerea. BEB enables expression analyses of genes of interest under different culture conditions by providing publication-ready heatmaps depicting transcript levels, without requiring advanced computational skills. BEB also provides details of each experiment and user-defined gene expression clustering and visualization options. If needed, tables of gene expression values can be downloaded for further exploration, including, for instance, the determination of differentially expressed genes. The BEB implementation is based on open-source computational technologies that can be deployed for other organisms. In this case, the new implementation will be limited only by the number of transcriptomic experiments that are incorporated into the platform. To demonstrate the usability and value of BEB, we analyzed gene expression patterns across different conditions, with a focus on secondary metabolite gene clusters, chromosome-wide gene expression, previously described virulence factors, and reference genes, providing the first comprehensive expression overview of these groups of genes in this relevant fungal phytopathogen. We expect this tool to be broadly useful in B. cinerea research, providing a basis for comparative transcriptomics and candidate gene identification for functional assays.
  • No Thumbnail Available
    Item
    The copper-dependent ACE1 transcription factor activates the transcription of the mco1 gene from the basidiomycete Phanerochaete chrysosporium
    (2008) Canessa, Paulo; Alvarez, Jose Miguel; Polanco, Ruben; Bull, Paulina; Vicuna, Rafael
    We have previously identified and functionally characterized the transcription factor ACE1 (Pc-ACE1) from Phanerochaete chrysosporium. In Saccharomyces cerevisiae, ACE1 activates the copper-dependent transcription of target genes through a DNA sequence element named ACE. However, the possible target gene(s) of Pc-ACE1 were unknown. An in silico search led to the identification of putative ACE elements in the promoter region of mco1, one of the four clustered genes encoding multicopper oxidases (MCOs) in P. chrysosporium. Since copper exerts an effect at the transcriptional level in MCOs from several organisms, in this work we analysed the effect of copper on transcript levels of the clustered MCO genes from P. chrysosporium, with the exception of the transcriptionally inactive mco3. Copper supplementation of cultures produced an increment in transcripts from genes mco1 and mco2, but not from mco4. Electrophoretic mobility-shift assays revealed that Pc-ACE1 binds specifically to a probe containing one of the putative ACE elements found in the promoter of mco1. In addition, using a cell-free transcription system, we showed that in the presence of cuprous ion, Pc-ACE1 induces activation of the promoter of mco1, but not that of mco2.
  • Loading...
    Thumbnail Image
    Item
    Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum
    (2015) Vega, Andrea; Canessa, Paulo; Hoppe, Gustavo; Retamal, Ignacio; Moyano, Tomás C.; Canales, Javier; Gutiérrez Ilabaca, Rodrigo Antonio; Rubilar, Joselyn

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback