• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Camu, Esteban"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    CONVERSION OF QUINOLINE ON ReS2 CATALYSTS: EFFECT OF THE SUPPORT AND THE ADDITION OF CS2 IN THE FEED
    (2017) Bassi, Romina; Camu, Esteban; Villarroel, Mirza; Gil-Llambias, Fco. Javier; Garcia-Fierro, J. L.; Escalona, Nestor; Baeza, Patricio
    The effect of supports and the addition of CS2 in the feed were studied on hydrodenitrogenation of Quinoline in a continuous flow reactor over ReS2/support catalysts at 300, 325 and 350 degrees C and 3MPa of H-2. The ReS2 supported on TiO2 displayed the highest activity followed by ZrO2, gamma-Al2O3 and SiO2 supports. The activity trend was correlated with the Re dispersion on the support. The effect of the addition of CS2 was increased activity until 2.5 v/v % content. At higher CS2 content the activity decreased due to competitive adsorption between CS2 and Quinoline on the active sites.
  • No Thumbnail Available
    Item
    Enhancing energy recovery of wastewater treatment plants through hydrothermal liquefaction
    (2023) Cabrera, Daniela V.; Barria, David A.; Camu, Esteban; Celis, Crispin; Tester, Jefferson W.; Labatut, Rodrigo A.
    Sewage sludge (SS) management constitutes both a challenge and an opportunity for the sustainability of wastewater treatment plants (WWTPs). Standalone anaerobic digestion (AD) stabilizes the biodegradable organics contained in SS but recovers only a fraction of the chemical energy stored therein and produces large amounts of un-stabilized sludge. Hydrothermal liquefaction (HTL) coupled with AD can enhance the treatment and energy recovery of SS. Standalone AD was compared against (1) an HTL-AD configuration, with SS as HTL input, and the generated aqueous product (AP) as AD input; and (2), an AD-HTL-AD configuration, with SS as AD input, the digestate as HTL input, and the generated AP as AD input. Both configurations decreased the SS' COD from 27.5 to 0.6 g L-1, while the overall energy recovered was increased up to 2.2-fold relative to conventional SS treatment using only AD. Under the HTL-AD configuration, biocrude yields were higher (i.e., 26.4 vs. 15.8) and the AP generated was more biodegradable (0.78 vs. 0.65), than those obtained under the AD-HTL-AD configuration. Monte Carlo uncertainty analyses confirmed that overall energy recoveries would follow the order AD-HTL-AD > HTL-AD > AD; with energy recoveries (95% confidence) between, 63.5-94.7%, 54.6-91.2%, and 33.2-71.1%, respectively. This study shows that, by implementing HTL as a standalone SS treatment, WWTPs can recover more energy than using AD alone. Furthermore, WWTPs with existing AD would recover additional energy through HTL of the generated digestate, significantly reducing the environmental impacts and costs of conventional solids management.
  • Loading...
    Thumbnail Image
    Item
    Novel Hydrophobic Functionalized UiO-66 Series: Synthesis, Characterization, and Evaluation of Their Structural and Physical-Chemical Properties
    (2024) Narea, Pilar; Brito, Ivan; Quintero, Yurieth; Camu, Esteban
    A novel set of four functionalized hydrophobic UiO-66-NHR series were synthesized through postsynthetic procedures, utilizing various benzoyl chlorides and UiO-66-NH2 as starting materials. This synthesis method was carried out by employing p- (1) and o-toluoyl (2), as well as 2- (3) and 4-fluorobenzoyl (4) substituents. The analysis of the resulting compounds was performed using conventional spectroscopic methods such as FT-IR and 1H NMR to quantify the conversion rate into amide. Furthermore, SEM and XPS techniques were employed for morphological and surface analysis. Finally, the evaluation of the chemical stability and contact angle using the sessile drop method was performed to evaluate the technological potential of these compounds for application in aqueous and acidic media (such as selective separation of different metals and wastewater recovery).
  • Loading...
    Thumbnail Image
    Item
    Theoretical and Experimental Study for Cross-Coupling Aldol Condensation over Mono- and Bimetallic UiO-66 Nanocatalysts
    (2023) Pazo Carballo, César Alexander; Blanco, Elodie; Camu, Esteban; Leiva Campusano, Ángel; Hidalgo-Rosa, Yoan; Zarate, Ximena; Dongil, Ana Belén; Schott Verdugo, Eduardo Enrique; Escalona, Néstor
    Mono- and bimetallic UiO-66 nanocatalysts were synthesized using the solvothermal synthesis method and evaluated in the aldol condensation reaction of benzaldehyde and acetone in a batch reactor. N2 physisorption, thermogravimetric analysis, temperature-programmed desorption of ammonia, X-ray diffraction, field-emission scanning electron microscopy–energy-dispersive X-ray, X-ray photoelectron spectroscopy, potentiometric titration, and Fourier transform infrared were used to characterize the nanocatalysts. The higher activity exhibited by the Zr/Hf-UiO-66 catalyst could be attributed to the lower orbital energy interaction with benzaldehyde, as shown by density functional theory. A synergetic effect is observed for the bimetallic UiO-66 nanocatalyst between Zr and Hf, obtaining a higher reaction rate than the monometallic nanocatalysts. Meanwhile, this antagonistic effect was shown in the bimetallic catalysts between Zr and Ce, which was less active than the monometallic UiO-66 catalyst due to free COOH generated during the synthesis. Finally, the selectivity results showed that incorporating Hf and Ce on Zr-UiO-66 favors benzalacetone formation by cross-coupling condensation of benzaldehyde and acetone at isoconversion conditions.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback