Browsing by Author "Cambiazo, Veronica"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemFungal Diversity Analysis of Grape Musts from Central Valley-Chile and Characterization of Potential New Starter Cultures(2020) Mandakovic, Dinka; Pulgar, Rodrigo; Maldonado, Jonathan; Mardones, Wladimir; Gonzalez, Mauricio; Cubillos, Francisco A.; Cambiazo, VeronicaAutochthonous microorganisms are an important source of the distinctive metabolites that influence the chemical profile of wine. However, little is known about the diversity of fungal communities associated with grape musts, even though they are the source of local yeast strains with potential capacities to become starters during fermentation. By using internal transcribed spacer (ITS) amplicon sequencing, we identified the taxonomic structure of the yeast community in unfermented and fermented musts of a typicalVitis viniferaL. var. Sauvignon blanc from the Central Valley of Chile throughout two consecutive seasons of production. Unsurprisingly,Saccharomycesrepresented the most abundant fungal genus in unfermented and fermented musts, mainly due to the contribution ofS. uvarum(42.7%) andS. cerevisiae(80%). Unfermented musts were highly variable between seasons and showed higher values of fungal diversity than fermented musts. Since microbial physiological characterization is primarily achieved in culture, we isolated nine species belonging to six genera of fungi from the unfermented must samples. All isolates were characterized for their potential capacities to be used as new starters in wine. Remarkably, onlyMetschnikowia pulcherrimacould co-exist with a commercialSaccharomyces cerevisiaestrain under fermentative conditions, representing a feasible candidate strain for wine production.
- ItemGenome sequencing and transcriptomic analysis of the Andean killifish Orestias ascotanensis reveals adaptation to high-altitude aquatic life(2022) Di Genova, Alex; Nardocci, Gino; Maldonado-Agurto, Rodrigo; Hodar, Christian; Valdivieso, Camilo; Morales, Pamela; Gajardo, Felipe; Marina, Raquel; Gutierrez, Rodrigo A.; Orellana, Ariel; Cambiazo, Veronica; Gonzalez, Mauricio; Glavic, Alvaro; Mendez, Marco A.; Maass, Alejandro; Allende, Miguel L.; Montecino, Martin A.Orestias ascotanensis (Cyprinodontidae) is a teleost pupfish endemic to springs feeding into the Ascotan saltpan in the Chilean Altiplano (3,700 m.a.s.l.) and represents an opportunity to study adaptations to high-altitude aquatic environments. We have de novo assembled the genome of O. ascotanensis at high coverage. Comparative analysis of the O. ascotanensis genome showed an overall process of contraction, including loss of genes related to Gprotein signaling, chemotaxis and signal transduction, while there was expansion of gene families associated with microtubule-based movement and protein ubiquitination. We identified 818 genes under positive selection, many of which are involved in DNA repair. Additionally, we identified novel and conserved microRNAs expressed in O. ascotanensis and its closely-related species, Orestias gloriae. Our analysis suggests that positive selection and expansion of genes that preserve genome stability are a potential adaptive mechanism to cope with the increased solar UV radiation to which high-altitude animals are exposed to.
- ItemGenome-scale metabolic models of Microbacterium species isolated from a high altitude desert environment(2020) Mandakovic, Dinka; Cintolesi, Angela; Maldonado, Jonathan; Mendoza, Sebastian N.; Aite, Meziane; Gaete, Alexis; Saitua, Francisco; Allende, Miguel; Cambiazo, Veronica; Siegel, Anne; Maass, Alejandro; Gonzalez, Mauricio; Latorre, MauricioThe Atacama Desert is the most arid desert on Earth, focus of important research activities related to microbial biodiversity studies. In this context, metabolic characterization of arid soil bacteria is crucial to understand their survival strategies under extreme environmental stress. We investigated whether strain-specific features of two Microbacterium species were involved in the metabolic ability to tolerate/adapt to local variations within an extreme desert environment. Using an integrative systems biology approach we have carried out construction and comparison of genome-scale metabolic models (GEMs) of two Microbacterium sp., CGR1 and CGR2, previously isolated from physicochemically contrasting soil sites in the Atacama Desert. Despite CGR1 and CGR2 belong to different phylogenetic clades, metabolic pathways and attributes are highly conserved in both strains. However, comparison of the GEMs showed significant differences in the connectivity of specific metabolites related to pH tolerance and CO2 production. The latter is most likely required to handle acidic stress through decarboxylation reactions. We observed greater GEM connectivity within Microbacterium sp. CGR1 compared to CGR2, which is correlated with the capacity of CGR1 to tolerate a wider pH tolerance range. Both metabolic models predict the synthesis of pigment metabolites (beta -carotene), observation validated by HPLC experiments. Our study provides a valuable resource to further investigate global metabolic adaptations of bacterial species to grow in soils with different abiotic factors within an extreme environment.