• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Calderon, Francisco J."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Changes in macroaggregate stability as a result of wetting/drying cycles of soils with different organic matter and clay contents
    (2024) Melej, Maria Jesus; Acevedo, Sara E.; Contreras, Cristina P.; Giraldo, Carolina, V; Maurer, Tessa; Calderon, Francisco J.; Bonilla, Carlos A.; CEDEUS (Chile)
    The wetting-drying (WD) cycles, caused by natural or anthropogenic processes such as rainfall or irrigation, can affect many soil properties. Among these properties, soil aggregate stability has been introduced as a convenient soil health indicator because of its relation to the soil's primary particles (sand, silt, and clay) and organic matter content (OM). However, previous studies have shown erratic effects depending on soil type and WD cycle setup when measuring aggregate stability. Therefore, this study aimed to characterize the soil primary particles composition and organic matter (OM) content of macroaggregates and measure the effects of WD cycles on aggregate stability. A series of soils with distinctive properties, such as OM and clay contents from five different USDA textural classes (loam, sandy loam, silty clay loam, silty loam, and clay loam) were used. Particle size distribution, OM, and mass fraction were measured in three aggregate size classes (2-1 mm, 1-0.5 mm, and 0.5-0.25 mm), and isolated aggregates were exposed to 3, 6, and 12 wetting and drying cycles. The main results indicate that soils with a high OM content have macroaggregates with finer particles, and the OM in soils is linearly related to the macroaggregate OM content. For 2-1 mm aggregates, a statistically significant reduction (p < 0.05) of water-stable aggregates compared to the control sample (0 cycles) was observed for every cycle, with reduction values between 4.8-7.3 %. An increase was observed only between 6-12 cycles (1.84 %). Additionally, statistically significant reductions were observed after the first three cycles in 1-0.5 mm aggregates and the first six in 0.5-0.25 mm aggregates. Finally, the macroaggregates were more resistant to the WD cycles when their clay and OM contents increased or the soil pH decreased. This study provides high-resolution results of macroaggregate particle size distribution and OM. It relates them to the effects of WD cycles in water-stable aggregates and soils with different land uses.
  • No Thumbnail Available
    Item
    Effects of soil heating changes on soil hydraulic properties in Central Chile
    (2024) Giraldo, Carolina V.; Acevedo, Sara E.; Contreras, Cristina P.; Santibanez, Fernando; Saez, Esteban; Calderon, Francisco J.; Bonilla, Carlos A.; CEDEUS (Chile)
    Wildfires are natural phenomena for most ecosystems on Earth. Many soil properties are impacted by fire, including soil hydraulic properties. We used a laboratory experiment to replicate the temperatures reached by a natural wildfire and documented the effects on soil hydraulic properties. This study hypothesizes that the impact of heating on soil hydrological properties can be explained by the interaction of a number of variables especially organic matter content (OM), cation exchange capacity (CEC), texture, pH, and electrical conductivity (EC). The main objective of this study is to explore the interconnections between soil hydraulic, chemical, and physical properties, focusing on understanding how these relationships change across different ecoregions and temperatures. Sixteen soils were collected across 16 sites susceptible to forest fires in the Central Zone of Chile and heated to 100 degrees C and 300 degrees C for two hours. These sites were representative of two distinct ecoregions: the Chilean Matorral (CM) and the Valdivian Temperate Forests (VTF). Chemical, physical, and hydraulic soil properties were measured before and after heating. At 100 degrees C, there were no significant changes in chemical, physical, or hydraulic soil properties. At 300 degrees C, significant changes were observed in most soil properties in soils from both ecoregions. The OM content and CEC decreased, whereas pH and electrical conductivity increased. In addition, clay content and water aggregate stability (WSA) decreased, while all hydraulic properties increased their values. The aforementioned results demonstrate that infiltration increased after the soil was heated. This can be attributed primarily to decreases in clay content. At the same time, the water repellency (R) index decreased, allowing water to more easily wet the soil particles. Correlations revealed that CEC and clay are the main factors ruling soil hydraulic properties at all temperatures. Clay mineralogy also contributes to the soil hydraulic behavior observed. Nonlinear models were developed to estimate hydraulic properties at 100 degrees C and 300 degrees C, using the main soil properties. The models illustrated that the soils of the CM ecoregion, which are characterized by lower OM and influence of clay/CEC ratio, would be less affected by fire compared to the soils of VTF. The water holding capacity would decrease in both ecoregions. However, due to the greater changes in OM and clay in VTF, the impact would be greater than in CM.1
  • No Thumbnail Available
    Item
    Environmental controls and long-term changes on carbon stocks under agricultural lands
    (2019) Ramirez, Paulina B.; Calderon, Francisco J.; Fonte, Steven J.; Bonilla, Carlos A.; CEDEUS (Chile)
    Improved understanding of changes in soil organic carbon (SOC) stocks is critical for developing strategies that ensure effective climate change mitigation and the long-term productivity. Changes in SOC are likely to vary across soil and climate conditions, yet long-term data to elucidate these trends across different ecosystems remains limited. In this study we evaluated long-term changes in SOC across a gradient of climate conditions (from arid to hyper humid), soil orders, and land uses (non-cultivated, woody perennial, and cultivated) in central Chile. Thus, we sought to find evidence for SOC changes in the agricultural lands over past three or four decades. Surface soils (8-29 cm depth) were sampled between 2014 and 2016 and analyzed for total C and N content, aggregate stability, texture, bulk density, pH as well as spectral properties using Mid-infrared (MidIR) and Near-infrared spectroscopy. SOC stocks were compared to those previously measured at the same sites between 1968 and 1994, covering a wide range of SOC values (from 12 Mg C ha(-1) to 128 Mg C ha(-1)). Our findings show that the largest SOC losses occurred in semiarid and subhumid areas for the time frame considered, decreasing from their initial C stocks by 24.7% and 26.1%, respectively. Moreover, cultivated soils in semiarid regions were more vulnerable than those in arid regions to SOC losses. The results also indicated that in cooler and humid regions, SOC stocks were stable or increased over time. Among soil orders, Mollisols showed the largest losses (29.9% reduction between sampling dates). The MidIR results indicate that the mineral bands for clays and silicates were associated with these sites demonstrating SOC conservation, suggesting that mineral protection played an important role in the long-term SOC storage in semiarid areas. This study provides a better understanding of temporal changes of SOC to address the restoration of degraded land and adaptation for future trends in global change.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback