• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cabrera-Barjas, Gustavo"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Eco-Friendly Design of Chitosan-Based Films with Biodegradable Properties as an Alternative to Low-Density Polyethylene Packaging
    (2024) Fiallos-Nunez, Johanna; Cardero, Yaniel; Cabrera-Barjas, Gustavo; Garcia-Herrera, Claudio M.; Inostroza, Matias; Estevez, Miriam; Espana-Sanchez, Beatriz Liliana; Valenzuela, Loreto M.
    Biopolymer-based films are a promising alternative for the food packaging industry, in which petrochemical-based polymers like low-density polyethylene (LDPE) are commanding attention because of their high pollution levels. In this research, a biopolymer-based film made of chitosan (CS), gelatin (GEL), and glycerol (GLY) was designed. A Response Surface Methodology (RSM) analysis was performed to determine the chitosan, gelatin, and glycerol content that improved the mechanical properties selected as response variables (thickness, tensile strength (TS), and elongation at break (EAB). The content of CS (1.1% w/v), GEL (1.1% w/v), and GLY (0.4% w/v) in the film-forming solution guarantees an optimized film (OPT-F) with a 0.046 +/- 0.003 mm thickness, 11.48 +/- 1.42 mPa TS, and 2.6 +/- 0.3% EAB. The OPT-F was characterized in terms of thermal, optical, and biodegradability properties compared to LDPE films. Thermogravimetric analysis (TGA) revealed that the OPT-F was thermally stable at temperatures below 300 degrees C, which is relevant to thermal processes in the food industry of packaging. The reduced water solubility (WS) (24.34 +/- 2.47%) and the improved biodegradability properties (7.1%) compared with LDPE suggests that the biopolymer-based film obtained has potential applications in the food industry as a novel packaging material and can serve as a basis for the design of bioactive packaging.
  • No Thumbnail Available
    Item
    Forest by-Product Valorization: Pilot-Scale Pinus radiata and Eucalyptus globulus Bark Mixture Extraction
    (2023) Santos, Jorge; Escobar-Avello, Danilo; Fuentealba, Cecilia; Cabrera-Barjas, Gustavo; Gonzalez-Alvarez, Julia; Martins, Jorge M.; Carvalho, Luisa H.
    One of the most important by-products generated in the forestry industry is the bark obtained during the debarking process. Pine (Pinus radiata D. Don) and eucalyptus (Eucalyptus globulus L.) are the main important tree species exploited in the Chilean forestry industry. The bark of P. radiata D. Don is an interesting source of extracts, rich in condensed tannins, with potential uses in biopolymer and bioadhesive preparation. Conversely, the E. globulus bark extracts are rich in hydrolyzable tannins with few applications. Nevertheless, the forest industry generates a high volume of these by-products, simultaneously. Then, it is interesting to determine a suitable process for the joint valorization of both forest by-products at a large scale. In this work, alkaline extraction (NaOH and Na2SO3) was performed at a pilot scale of a mixture of E. globulus and P. radiata barks prepared at different ratios (0%-100%). The effect of bark mixture composition on the resulting extract's properties was evaluated. All extracts were characterized according to their chemical composition by FTIR-ATR, MALDI-TOF, and molecular weight distribution (GPC). In addition, the Stiasny number was tested to determine the potential use of extracts in bioadhesive formulation. The self-condensation reaction of resulting extracts was studied using Dynamic Mechanical Analysis (DMA) and Automated Bond Evaluation System (ABES) techniques. Results show a good interaction between condensed and hydrolyzable tannins from both species' barks. It also demonstrated the potential application of the obtained extracts, for a bark ratio of 50:50, in the formulation of bioadhesives for particleboard manufacture. The obtained product showed a similar performance to that of the bioadhesive formulated with the extract obtained using only P. radiata bark.
  • No Thumbnail Available
    Item
    Influence of chitin nanofibers and gallic acid on physical-chemical and biological performances of chitosan-based films
    (2024) Cabrera-Barjas, Gustavo; Albornoz, Karin; Belchi, Maria Dolores Lopez; Giordano, Ady; Bravo-Arrepol, Gaston; Moya-Elizondo, Ernesto; San Martin, Juan; Valdes, Oscar; Nesic, Aleksandra
    In this work, chitosan films loaded with gallic acid and different content of chitin nanofibers were prepared and subjected to different characterization techniques. The results showed that the inclusion of gallic acid to chitosan films caused moderate decrease in water vapor permeability (by 29 %) and increased tensile strength of films (by 169 %) in comparison to the neat chitosan films. Furthermore, it was found that the addition of chitin nanofibers up to 30 % into chitosan/gallic acid films additionally improved tensile strength (by 474 %) and reduced plasticity of films (by 171 %), when compared to the chitosan/gallic acid films. Increased concentration of chitin nanofibers in films reduced the overall water vapor permeability of films by 51 %. In addition, gallic acid and chitin nanofibers had synergic effect on high chitosan film's antioxidant and antifungal activity toward Botrytis cinerea (both above 95 %). Finally, chitosan/gallic acid/chitin nanofibers films reduced decay incidence of strawberries, increased total soluble solid content, and promoted high production of some polyphenols during cold storage, in comparison to the control chitosan films and uncoated strawberry samples. Hence, these results suggest that chitosan/gallic acid/chitin nanofibers can present eco-sustainable approach for preservation of strawberries, giving them additional nutritional value.
  • No Thumbnail Available
    Item
    Sulfated Polysaccharide Extracted from the Green Algae Codium bernabei: Physicochemical Characterization and Antioxidant, Anticoagulant and Antitumor Activity
    (2022) Figueroa, Fabian A.; Abdala-Diaz, Roberto T.; Perez, Claudia; Casas-Arrojo, Virginia; Nesic, Aleksandra; Tapia, Cecilia; Duran, Carla; Valdes, Oscar; Parra, Carolina; Bravo-Arrepol, Gaston; Soto, Luis; Becerra, Jose; Cabrera-Barjas, Gustavo
    Codium bernabei is a green alga that grows on Chilean coasts. The composition of its structural polysaccharides is still unknown. Hence, the aim of this work is to isolate and characterize the hot water extracted polysaccharide fractions. For this purpose, the water extracts were further precipitated in alcohol (TPs) and acid media (APs), respectively. Both fractions were characterized using different physicochemical techniques such as GC-MS, GPC, FTIR, TGA, and SEM. It is confirmed that the extracted fractions are mainly made of sulfated galactan unit, with a degree of sulfation of 19.3% (TPs) and 17.4% (ATs) and a protein content of 3.5% in APs and 15.6% in TPs. Other neutral sugars such as xylose, glucose, galactose, fucose, mannose, and arabinose were found in a molar ratio (0.05:0.6:1.0:0.02:0.14:0.11) for TPs and (0.05:0.31:1.0:0.03:0.1:0.13) for ATs. The molecular weight of the polysaccharide samples was lower than 20 kDa. Both polysaccharides were thermally stable (Tonset > 190 degrees C) and showed antioxidant activity according to the ABTS(center dot+) and DPPH tests, where TPs fractions had higher scavenging activity (35%) compared to the APs fractions. The PT and APTTS assays were used to measure the anticoagulant activity of the polysaccharide fractions. In general, the PT activity of the TPs and APs was not different from normal plasma values. The exception was the TPs treatment at 1000 mu g mL(-1) concentration. The APTTS test revealed that clotting time for both polysaccharides was prolonged regarding normal values at 1000 mu g mL(-1). Finally, the antitumor test in colorectal carcinoma (HTC-116) cell line, breast cancer (MCF-7) and human leukemia (HL-60) cell lines showed the cytotoxic effect of TPs and APs. Those results suggest the potential biotechnological application of sulfate galactan polysaccharides isolated from a Chilean marine resource.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback