Browsing by Author "Bustamante, Hianara A."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemNegative Modulation of Macroautophagy by Stabilized HERPUD1 is Counteracted by an Increased ER-Lysosomal Network With Impact in Drug-Induced Stress Cell Survival(2022) Vargas, Gabriela; Cortes, Omar; Arias-Munoz, Eloisa; Hernandez, Sergio; Cerda-Troncoso, Cristobal; Hernandez, Laura; Gonzalez, Alexis E.; Tatham, Michael H.; Bustamante, Hianara A.; Retamal, Claudio; Cancino, Jorge; Varas-Godoy, Manuel; Hay, Ronald T.; Rojas-Fernandez, Alejandro; Cavieres, Viviana A.; Burgos, Patricia V.Macroautophagy and the ubiquitin proteasome system work as an interconnected network in the maintenance of cellular homeostasis. Indeed, efficient activation of macroautophagy upon nutritional deprivation is sustained by degradation of preexisting proteins by the proteasome. However, the specific substrates that are degraded by the proteasome in order to activate macroautophagy are currently unknown. By quantitative proteomic analysis we identified several proteins downregulated in response to starvation independently of ATG5 expression. Among them, the most significant was HERPUD1, an ER membrane protein with low expression and known to be degraded by the proteasome under normal conditions. Contrary, under ER stress, levels of HERPUD1 increased rapidly due to a blockage in its proteasomal degradation. Thus, we explored whether HERPUD1 stability could work as a negative regulator of autophagy. In this work, we expressed a version of HERPUD1 with its ubiquitin-like domain (UBL) deleted, which is known to be crucial for its proteasome degradation. In comparison to HERPUD1-WT, we found the UBL-deleted version caused a negative role on basal and induced macroautophagy. Unexpectedly, we found stabilized HERPUD1 promotes ER remodeling independent of unfolded protein response activation observing an increase in stacked-tubular structures resembling previously described tubular ER rearrangements. Importantly, a phosphomimetic S59D mutation within the UBL mimics the phenotype observed with the UBL-deleted version including an increase in HERPUD1 stability and ER remodeling together with a negative role on autophagy. Moreover, we found UBL-deleted version and HERPUD1-S59D trigger an increase in cellular size, whereas HERPUD1-S59D also causes an increased in nuclear size. Interestingly, ER remodeling by the deletion of the UBL and the phosphomimetic S59D version led to an increase in the number and function of lysosomes. In addition, the UBL-deleted version and phosphomimetic S59D version established a tight ER-lysosomal network with the presence of extended patches of ER-lysosomal membrane-contact sites condition that reveals an increase of cell survival under stress conditions. Altogether, we propose stabilized HERPUD1 downregulates macroautophagy favoring instead a closed interplay between the ER and lysosomes with consequences in drug-cell stress survival.
- ItemNovel insights into the non-canonical roles of PSMD14/POH1/Rpn11 in proteostasis and in the modulation of cancer progression(2023) Bustamante, Hianara A.; Albornoz, Nicolas; Morselli, Eugenia; Soza, Andrea; Burgos, Patricia V.PSMD14/POH1/Rpn11 plays a crucial role in cellular homeostasis. PSMD14 is a structural subunit of the lid subcomplex of the proteasome 19S regulatory particle with constitutive deubiquitinase activity. Canonically, PSMD14 removes the full ubiquitin chains with K48-linkages by hydrolyzing the isopeptide bond between the substrate and the C-terminus of the first ubiquitin, a crucial step for the entry of substrates into the catalytic barrel of the 20S proteasome and their subsequent degradation, all in context of the 26S proteasome. However, more recent discoveries indicate PSMD14 DUB activity is not only coupled to the translocation of substrates into the core of 20S proteasome. During the assembly of the lid, activity of PSMD14 has been detected in the context of the heterodimer with PSMD7. Additionally, assembly of the lid subcomplex occurs as an independent event of the base subcomplex and 20S proteasome. This feature opens the possibility that the regulatory particle, free lid subcomplex or the heterodimer PSMD14-PSMD7 might play other physiological roles including a positive function on protein stability through deubiquitination. Here we discuss scenarios that could enhance this PSMD14 non-canonical pathway, the potential impact in preventing degradation of substrates by autophagy highlighting the main findings that support this hypothesis. Finally, we discuss why this information should be investigated in biomedicine specifically with focus on cancer progression to design new therapeutic strategies against the lid subcomplex and the heterodimer PSMD14-PSMD7, highlighting PSMD14 as a druggable target for cancer therapy.
- ItemTetrahydrohyperforin inhibits the proteolytic processing of amyloid precursor protein and enhances its degradation by Atg5-dependent autophagy(2015) Cavieres, Viviana A.; González, Alexis; Muñoz, Vanessa C.; Yefi Rubio, Claudia Pamela; Bustamante, Hianara A.; Barraza, Rafael R.; Tapia Rojas, Cheril Cecilia; Otth, Carola; Barrera, María José; Inestrosa Cantín, Nibaldo; Mardones, Gonzalo A.; González, Carlos; Burgos, Patricia V.
- ItemThe Proteasomal Deubiquitinating Enzyme PSMD14 Regulates Macroautophagy by Controlling Golgi-to-ER Retrograde Transport(2020) Bustamante, Hianara A.; Cereceda, Karina; Gonzalez, Alexis E.; Valenzuela, Guillermo E.; Cheuquemilla, Yorka; Hernandez, Sergio; Arias-Munoz, Eloisa; Cerda-Troncoso, Cristobal; Bandau, Susanne; Soza, Andrea; Kausel, Gudrun; Kerr, Bredford; Mardones, Gonzalo A.; Cancino, Jorge; Hay, Ronald T.; Rojas-Fernandez, Alejandro; Burgos, Patricia, VUbiquitination regulates several biological processes, however the role of specific members of the ubiquitinome on intracellular membrane trafficking is not yet fully understood. Here, we search for ubiquitin-related genes implicated in protein membrane trafficking performing a High-Content siRNA Screening including 1187 genes of the human "ubiquitinome" using amyloid precursor protein (APP) as a reporter. We identified the deubiquitinating enzyme PSMD14, a subunit of the 19S regulatory particle of the proteasome, specific for K63-Ub chains in cells, as a novel regulator of Golgi-to-endoplasmic reticulum (ER) retrograde transport. Silencing or pharmacological inhibition of PSMD14 with Capzimin (CZM) caused a robust increase in APP levels at the Golgi apparatus and the swelling of this organelle. We showed that this phenotype is the result of rapid inhibition of Golgi-to-ER retrograde transport, a pathway implicated in the early steps of the autophagosomal formation. Indeed, we observed that inhibition of PSMD14 with CZM acts as a potent blocker of macroautophagy by a mechanism related to the retention of Atg9A and Rab1A at the Golgi apparatus. As pharmacological inhibition of the proteolytic core of the 20S proteasome did not recapitulate these effects, we concluded that PSMD14, and the K63-Ub chains, act as a crucial regulatory factor for macroautophagy by controlling Golgi-to-ER retrograde transport.