• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Burns, James"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Assessment of chestnut (Castanea spp.) slice quality using color images
    (ELSEVIER SCI LTD, 2013) Donis Gonzalez, Irwin R.; Guyer, Daniel E.; Leiva Valenzuela, Gabriel A.; Burns, James
    Unbiased internal quality classification of Chestnuts (Castanea spp.) is extremely important to the fresh and processed industries. It can also be used as a tool for applied scientific studies, such as the training of non-invasive techniques to determine chestnut internal quality, and the effect of pre- and post-harvest treatments. At the moment, humans visually perform the invasive quality assessment of chestnuts. This procedure is prone to errors and high variability due to individuals' fatigue, lack of training, and subjectivity. Thus, there is a need to develop a technique that is able to objectively classify internal quality of chestnuts. In this paper, a computer vision methodology is proposed to sort chestnuts into five classes, as established by an expert human rater. 1790 color images from slices with different quality classes were acquired, using a flat panel scanner, from the hybrid cultivar 'Colossal' and 'Chinese seedlings'. After preprocessing, a total of 1931 color, textural, and geometric features were extracted from each color image. Furthermore, the most relevant features were selected using a sequential forward selection algorithm. Thirty-six features were found to be effective in designing a quadratic discriminant classifier with a cross-validated overall performance accuracy of 89.6%. These results showed that this method is an accurate, reliable, and objective tool to determine chestnut slice quality, and might be applicable to in-line sorting systems. (C) 2012 Elsevier Ltd. All rights reserved.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback