Browsing by Author "Berta, S."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemEnhanced star formation rates in AGN hosts with respect to inactive galaxies from PEP-Herschel observations(2012) Santini, P.; Rosario, D. J.; Shao, L.; Lutz, D.; Maiolino, R.; Alexander, D. M.; Altieri, B.; Andreani, P.; Aussel, H.; Bauer, F. E.; Berta, S.; Bongiovanni, A.; Brandt, W. N.; Brusa, M.; Cepa, J.; Cimatti, A.; Daddi, E.; Elbaz, D.; Fontana, A.; Schreiber, N. M. Foerster; Genzel, R.; Grazian, A.; Le Floc'h, E.; Magnelli, B.; Mainieri, V.; Nordon, R.; Garcia, A. M. Perez; Poglitsch, A.; Popesso, P.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Salvato, M.; Sanchez-Portal, M.; Sturm, E.; Tacconi, L. J.; Valtchanov, I.; Wuyts, S.We compare the average star formation (SF) activity in X-ray selected AGN hosts with a mass-matched control sample of inactive galaxies, including both star forming and quiescent sources, in the 0.5 < z < 2.5 redshift range. Recent observations carried out by PACS, the 60-210 mu m photometric camera on board the Herschel Space Observatory, in GOODS-S, GOODS-N and COSMOS allow us to obtain an unbiased estimate of the far-IR luminosity, and hence of the SF properties, of the two samples. Accurate AGN host stellar mass estimates are obtained by decomposing their total emission into the stellar and the nuclear components. We report evidence of a higher average SF activity in AGN hosts with respect to the control sample of inactive galaxies. The level of SF enhancement is modest (similar to 0.26 dex at similar to 3 sigma confidence level) at low X-ray luminosities (L-X less than or similar to 10(43.5) erg s(-1)) and more pronounced (0.56 dex at >10 sigma confidence level) in the hosts of luminous AGNs. However, when comparing to star forming galaxies only, AGN hosts are found broadly consistent with the locus of their "main sequence". We investigate the relative far-IR luminosity distributions of active and inactive galaxies, and find a higher fraction of PACS detected, hence normal and highly star forming systems among AGN hosts. Although different interpretations are possible, we explain our findings as a consequence of a twofold AGN growth path: faint AGNs evolve through secular processes, with instantaneous AGN accretion not tightly linked to the current total SF in the host galaxy, while the luminous AGNs co-evolve with their hosts through periods of enhanced AGN activity and star formation, possibly through major mergers. While an increased SF activity with respect to inactive galaxies of similar mass is expected in the latter, we interpret the modest SF offsets measured in low-L-X AGN hosts as either a) generated by non-synchronous accretion and SF histories in a merger scenario or b) due to possible connections between instantaneous SF and accretion that can be induced by smaller scale (non-major merger) mechanisms. Far-IR luminosity distributions favour the latter scenario.
- ItemHerschel FIR counterparts of selected Lyα emitters at z ∼ 2.2 Fast evolution since z ∼ 3 or missed obscured AGNs?(2010) Bongiovanni, A.; Oteo, I.; Cepa, J.; Perez Garcia, A. M.; Sanchez-Portal, M.; Ederoclite, A.; Aguerri, J. A. L.; Alfaro, E. J.; Altieri, B.; Andreani, P.; Aparicio-Villegas, M. T.; Aussel, H.; Benitez, N.; Berta, S.; Broadhurst, T.; Cabrera-Cano, J.; Castander, F. J.; Cava, A.; Cervino, M.; Chulani, H.; Cimatti, A.; Cristobal-Hornillos, D.; Daddi, E.; Dominguez, H.; Elbaz, D.; Fernandez-Soto, A.; Schreiber, N. Foerster; Genzel, R.; Gomez, M. F.; Gonzalez Delgado, R. M.; Grazian, A.; Gruppioni, C.; Herreros, J. M.; Iglesias Groth, S.; Infante, L.; Lutz, D.; Magnelli, B.; Magdis, G.; Maiolino, R.; Marquez, I.; Martinez, V. J.; Masegosa, J.; Moles, M.; Molino, A.; Nordon, R.; del Olmo, A.; Perea, J.; Poglitsch, A.; Popesso, P.; Pozzi, F.; Prada, F.; Quintana, J. M.; Riguccini, L.; Rodighiero, G.; Saintonge, A.; Sanchez, S. F.; Santini, P.; Shao, L.; Sturm, E.; Tacconi, L.; Valtchanov, I.Ly alpha emitters (LAEs) are seen everywhere in the redshift domain from local to z similar to 7. Far-infrared (FIR) counterparts of LAEs at different epochs could provide direct clues on dust content, extinction, and spectral energy distribution (SED) for these galaxies. We search for FIR counterparts of LAEs that are optically detected in the GOODS-North field at redshift z similar to 2.2 using data from the Herschel Space Telescope with the Photodetector Array Camera and Spectrometer (PACS). The LAE candidates were isolated via color-magnitude diagram using the medium-band photometry from the ALHAMBRA Survey, ancillary data on GOODS-North, and stellar population models. According to the fitting of these spectral synthesis models and FIR/optical diagnostics, most of them seem to be obscured galaxies whose spectra are AGN-dominated. From the analysis of the optical data, we have observed a fraction of AGN or composite over source total number of similar to 0.75 in the LAE population at z similar to 2.2, which is marginally consistent with the fraction previously observed at z = 2.25 and even at low redshift (0.2 < z < 0.45), but significantly different from the one observed at redshift similar to 3, which could be compatible either with a scenario of rapid change in the AGN fraction between the epochs involved or with a non detection of obscured AGN in other z = 2-3 LAE samples due to lack of deep FIR observations. We found three robust FIR (PACS) counterparts at z similar to 2.2 in GOODS-North. This demonstrates the possibility of finding dust emission in LAEs even at higher redshifts.
- ItemHerschel reveals the obscured star formation in HiZELS Hα emitters at z=1.47(2013) Ibar, E.; Sobral, D.; Best, P. N.; Ivison, R. J.; Smail, I.; Arumugam, V.; Berta, S.; Bethermin, M.; Bock, J.; Cava, A.; Conley, A.; Farrah, D.; Geach, J.; Ikarashi, S.; Kohno, K.; Le Floc'h, E.; Lutz, D.; Magdis, G.; Magnelli, B.; Marsden, G.; Oliver, S. J.; Page, M. J.; Pozzi, F.; Riguccini, L.; Schulz, B.; Seymour, N.; Smith, A. J.; Symeonidis, M.; Wang, L.; Wardlow, J.; Zemcov, M.We describe the far-infrared (far-IR; rest-frame 8-1000-mu m) properties of a sample of 443 H alpha-selected star-forming galaxies in the Cosmic Evolution Survey (COSMOS) and Ultra Deep Survey (UDS) fields detected by the High-redshift Emission Line Survey (HiZELS) imaging survey. Sources are identified using narrow-band filters in combination with broad-band photometry to uniformly select H alpha (and [O ii] if available) emitters in a narrow redshift slice at z = 1.47 +/- 0.02. We use a stacking approach in Spitzer-MIPS mid-IR, Herschel-PACS/SPIRE far-IR [from the PACS Evolutionary Prove (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES)] and AzTEC mm-wave images to describe their typical far-IR properties. We find that HiZELS galaxies with observed H alpha luminosities of L(H alpha)(obs) approximate to 10(8.1-9.1) L-circle dot ( approximate to 10(41.7-42.7) erg s(-1)) have bolometric far-IR luminosities of typical luminous IR galaxies, L(8-1000 mu m) approximate to 10(-0.006)(11.41)(+0.04) L-circle dot. Combining the H alpha and far-IR luminosities, we derive median star formation rates (SFRs) of SFRH alpha, FIR = 32 +/- 5 M-circle dot yr(-1) and H alpha extinctions of A(H alpha) = 1.0 +/- 0.2 mag. Perhaps surprisingly, little difference is seen in typical HiZELS extinction levels compared to local star-forming galaxies. We confirm previous empirical stellar mass (M-*) to A(H alpha) relations and the little or no evolution up to z = 1.47. For HiZELS galaxies (or similar samples) we provide an empirical parametrization of the SFR as a function of rest-frame (u - z) colours and 3.6-mu m photometry - a useful proxy to aid in the absence of far-IR detections in high-z galaxies. We find that the observed H alpha luminosity is a dominant SFR tracer when rest-frame (u - z) colours are less than or similar to 0.9 mag or when Spitzer-3.6-mu m photometry is fainter than 22 mag (Vega) or when stellar masses are lower than 10(9.7) M-circle dot. We do not find any correlation between the [O ii]/H alpha and far-IR luminosity, suggesting that this emission line ratio does not trace the extinction of the most obscured star-forming regions, especially in massive galaxies where these dominate. The luminosity-limited HiZELS sample tends to lie above of the so-called main sequence for star-forming galaxies, especially at low stellar masses, indicating high star formation efficiencies in these galaxies. This work has implications for SFR indicators and suggests that obscured star formation is linked to the assembly of stellar mass, with deeper potential wells in massive galaxies providing dense, heavily obscured environments in which stars can form rapidly.
- ItemNUCLEAR ACTIVITY IS MORE PREVALENT IN STAR-FORMING GALAXIES(2013) Rosario, D. J.; Santini, P.; Lutz, D.; Netzer, H.; Bauer, F. E.; Berta, S.; Magnelli, B.; Popesso, P.; Alexander, D. M.; Brandt, W. N.; Genzel, R.; Maiolino, R.; Mullaney, J. R.; Nordon, R.; Saintonge, A.; Tacconi, L.; Wuyts, S.We explore the question of whether low and moderate luminosity active galactic nuclei (AGNs) are preferentially found in galaxies that are undergoing a transition from active star formation (SF) to quiescence. This notion has been suggested by studies of the UV-optical colors of AGN hosts, which find them to be common among galaxies in the so-called Green Valley, a region of galaxy color space believed to be composed mostly of galaxies undergoing SF quenching. Combining the deepest current X-ray and Herschel/PACS far-infrared (FIR) observations of the two Chandra Deep Fields with redshifts, stellar masses, and rest-frame photometry derived from the extensive and uniform multi-wavelength data in these fields, we compare the rest-frame U - V color distributions and star formation rate distributions of AGNs and carefully constructed samples of inactive control galaxies. The UV-to-optical colors of AGNs are consistent with equally massive inactive galaxies at redshifts out to z similar to 2, but we show that such colors are poor tracers of SF. While the FIR distributions of both star-forming AGNs and star-forming inactive galaxies are statistically similar, we show that AGNs are preferentially found in star-forming host galaxies, or, in other words, AGNs are less likely to be found in weakly star-forming or quenched galaxies. We postulate that, among X-ray-selected AGNs of low and moderate accretion luminosities, the supply of cold gas primarily determines the accretion rate distribution of the nuclear black holes.
- ItemThe composite nature of Dust-Obscured Galaxies (DOGs) at z ∼ 2–3 in the COSMOS field – I. A far-infrared view.(2015) Riguccini, L; Treister, Ezequiel; Le Floc'H e.; Mullaney, J.; Menéndez-Delmestre, K.; Aussel, H.; Berta, S.; Calanog, J.; Capak, P.; Cooray, A.; Ilbert, O.
- ItemThe incidence of obscuration in active galactic nuclei.(2014) Merloni, A.; Treister, Ezequiel; Bongiorno, A.; Brusa, Marcella; Iwasawa, K.; Mainieri, V.; Magnelli, B.; Salvato, M.; Berta, S.; Cappelluti N; Comastri, A.
- ItemThe mean star formation rate of X-ray selected active galaxies and its evolution from z ∼ 2.5: results from PEP-Herschel(2012) Rosario, D. J.; Santini, P.; Lutz, D.; Shao, L.; Maiolino, R.; Alexander, D. M.; Altieri, B.; Andreani, P.; Aussel, H.; Bauer, F. E.; Berta, S.; Bongiovanni, A.; Brandt, W. N.; Brusa, M.; Cepa, J.; Cimatti, A.; Cox, T. J.; Daddi, E.; Elbaz, D.; Fontana, A.; Schreiber, N. M. Foerster; Genzel, R.; Grazian, A.; Le Floch, E.; Magnelli, B.; Mainieri, V.; Netzer, H.; Nordon, R.; Garcia, I. Perez; Poglitsch, A.; Popesso, P.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Salvato, M.; Sanchez-Portal, M.; Sturm, E.; Tacconi, L. J.; Valtchanov, I.; Wuyts, S.We study relationships between star-formation rate (SFR) and the accretion luminosity and nuclear obscuration of X-ray selected active galactic nuclei (AGNs) using a combination of deep far-infrared (FIR) and X-ray data in three key extragalactic survey fields (GOODS-South, GOODS-North and COSMOS), as part of the PACS Evolutionary Probe (PEP) program. The use of three fields with differing areas and depths enables us to explore trends between the global FIR luminosity of the AGN hosts and the luminosity of the active nucleus across 4.5 orders of magnitude in AGN luminosity (L-AGN) and spanning redshifts from the Local Universe to z = 2.5. Using imaging from the Herschel/PACS instrument in 2-3 bands, we combine FIR detections and stacks of undetected objects to arrive at mean fluxes for subsamples in bins of redshift and X-ray luminosity. We constrain the importance of AGN-heated dust emission in the FIR and confirm that the majority of the FIR emission of AGNs is produced by cold dust heated by star-formation in their host galaxies.