• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bennett, MVL"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Gating and regulation of connexin 43 (U43) hemichannels
    (2003) Contreras, JE; Sáez, JC; Bukauskas, FF; Bennett, MVL
    Connexin 43 (Cx43) nonjunctional or "unapposed" hemichannels can open under physiological or pathological conditions. We characterize hemichannels comprised of Cx43 or Cx43-EGFP (Cx43 with enhanced GFP fused to the C terminus) expressed in HeLa cells. Channel opening was induced at potentials greater than +60 mV. Open probability appeared to be very low. No comparable opening was detected in the parental, nontransfected HeLa cells. Conductance of fully open single hemichannels was approximate to220 pS, which is approximately double that of Cx43 cell-cell channels. Cx43 hemichannels exhibited two types of gating: fast transitions (<1 ms) between the fully open state and a substate of approximate to75 pS and slow transitions (>5 ms) between either open state and the fully closed state. Cx43-EGFP hemichannels exhibited only slow transitions (>5 ms) between closed and fully open states. These properties resemble those of the corresponding Cx43 and Cx43-EGFP cell-cell channels. Cx43 with EGFP on the N terminus (EGFP-Cx43) inserted into the surface and formed plaques but did not form hemichannels or cell-cell channels. Hemichannel blockers, 18beta-glycyrrhetinic acid or La3+, blocked depolarization-induced currents. Uptake of ethidium bromide (i) was faster in Cx43 and Cx43-EGFP than parental and EGFP-Cx43 cells, (it) was directly correlated with Cx43-EGFP expression, (M) was reduced by hemichannel blockers, and (iv) occurred at the same low rate in EGFP-Cx43 and parental cells. Although hemichannel opening was not detected electrophysiologically at the resting potential, infrequent or brief opening could account for ethidium bromide uptake. Opening of Cx43 hemichannels may mediate normal signaling or be deleterious.
  • No Thumbnail Available
    Item
    Microglia at brain stab wounds express connexin 43 and in vitro form functional gap junctions after treatment with interferon-γ and tumor necrosis factor-α
    (2001) Eugenín, EA; Eckardt, D; Theis, M; Willecke, K; Bennett, MVL; Sáez, JC
    Gap junctional communication between microglia was investigated at rat brain stab wounds and in primary cultures of rat and mouse cells. Under resting conditions, rat microglia (FITC-isolectin-B4-reactive cells) were sparsely distributed in the neocortex, and most (95%) were not immunoreactive for Cx43, a gap junction protein subunit. At brain stab wounds, microglia progressively accumulated over several days and formed aggregates that frequently showed Cx43 immunoreactivity at interfaces between cells. In primary culture, microglia showed low levels of Cx43 determined by Western blotting, diffuse intracellular Cx43 immunoreactivity, and a low incidence of dye coupling. Treatment with the immunostimulant bacterial lipopolysaccharide (LPS) or the cytokines interferon-gamma (INF-gamma) or tumor necrosis factor-alpha (TNF-alpha) one at a time did not increase the incidence of dye coupling. However, microglia treated with INF-gamma plus LPS showed a dramatic increase in dye coupling that was prevented by coapplication of an anti-TNF-alpha antibody, suggesting the release and autocrine action of TNF-alpha. Treatment with INF-gamma plus TNF-alpha also greatly increased the incidence of dye coupling and the Cx43 levels with translocation of Cx43 to cell-cell contacts. The cytokine-induced dye coupling was reversibly inhibited by 18 alpha -glycyrrhetinic acid, a gap junction blocker. Cultured mouse microglia also expressed Cx43 and developed dye coupling upon treatment with cytokines, but microglia from homozygous Cx43-deficient mice did not develop significant dye coupling after treatment with either INF-gamma plus LPS or INF-gamma plus TNF-alpha. This report demonstrates that microglia can communicate with each other through gap junctions that are induced by inflammatory cytokines, a process that may be important in the elaboration of the inflammatory response.
  • No Thumbnail Available
    Item
    S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes
    (2006) Retamal, MA; Cortés, CJ; Reuss, L; Bennett, MVL; Sáez, JC
    Marked increase in cell permeability ascribed to open connexin (Cx)43 hemichannels is induced by metabolic inhibition (MI) of cortical astrocytes in culture, but the molecular mechanisms are not established. Dephosphorylation and/or oxidation of Cx43 hemichannels was proposed as a potential mechanism to increase their open probability. We now demonstrate that MI increases the number of hemichannels on the cell surface assayed by biotinylation and Western blot, and that this change is followed by increased dephosphorylation and S-nitrosylation. The increase in rate of dye uptake caused by MI is comparable to the increase in surface expression; thus, open probability and permeation per hemichannel may be unchanged. Reducing agents did not affect dephosphorylation of Cx43 hemichannels but reduced dye uptake and S-nitrosylation. Uptake was also reduced by elevated intracellular but not extracellular levels of reduced glutathione. Moreover, nitric oxide donors induced dye uptake and nitrosylation of surface Cx43 but did not affect its abundance or phosphorylation. Thus, permeability per channel is increased, presumably because of increase in open probability. We propose that increased dye uptake induced by MI is mediated by an increased number of Cx43 hemichannels in the surface and is associated with multiple molecular changes, among which nitrosylation of intracellular Cx43 cysteine residues may be a critical factor.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback